Advertisement

Agrobacterium Transformation of Arabidopsis thaliana Roots

A Quantitative Assay
  • Stanton B. Gelvin
Part of the Methods in Molecular Biology book series (MIMB, volume 343)

Summary

Arabidopsis thaliana has become a major model system for investigating plant molecular, genetic, and biochemical processes. Arabidopsis is highly susceptible to Agrobacterium-mediated transformation using “flower dip” and “vacuum infiltration” protocols. However, Arabidopsis has also become a major system to investigate the mechanism of Agrobacterium-mediated transformation of somatic tissue. Such investigations require a reproducible, quantitative assay system to determine transformation frequency. We describe here an Arabidopsis root transformation protocol that can be used to determine transformation frequencies for wild-type and mutant Agrobacterium strains and for various Arabidopsis wild-type and mutant lines.

Key Words

Agrobacterium tumefaciens Arabidopsis thaliana plant genetic transformation plant genetic engineering root transformation 

References

  1. 1.
    Anderson, A. and Moore, L. (1979) Host specificity in the genus Agrobacterium. Phytopathology 69, 320–323.CrossRefGoogle Scholar
  2. 2.
    DeCleene, M. and DeLey, J. (1976) The host range of crown gall. Bot. Rev. 46, 389–466.CrossRefGoogle Scholar
  3. 3.
    Pena, L. and Seguin, A. (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol. 19, 500–506.PubMedCrossRefGoogle Scholar
  4. 4.
    Porter, J. R. (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit. Rev. Plant Sci. 10, 387–421.CrossRefGoogle Scholar
  5. 5.
    van Wordragen, M. F. and Dons, H. J. M. (1992) Agrobacterium tumefaciens-mediated transformation of recalcitrant crops. Plant Mol. Biol. Rep. 10, 12–36.CrossRefGoogle Scholar
  6. 6.
    Bechtold, N., Ellis, J., and Pelletier, G. (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. 316, 1194–1199.Google Scholar
  7. 7.
    Bechtold, N., Jaudeau, B., Jolivet, S., et al. (2000) The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 155, 1875–1887.PubMedGoogle Scholar
  8. 8.
    Bechtold, N., Jolivet, S., Voisin, R., and Pelletier, G. (2003) The endosperm and the embryo of Arabidopsis thaliana are independently transformed though infiltration by Agrobacterium tumefaciens. Plant Mol. Biol. 12, 509–517.Google Scholar
  9. 9.
    Bent, A. F. (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol. Biochem. 124, 1540–1547.Google Scholar
  10. 10.
    Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.PubMedCrossRefGoogle Scholar
  11. 11.
    Curtis, I. S. and Nam, H. G. (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method-plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res. 10, 363–371.PubMedCrossRefGoogle Scholar
  12. 12.
    Desfeux, C., Clough, S. J., and Bent, A. F. (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. Biochem. 123, 895–904.Google Scholar
  13. 13.
    Liu, F., Cao, M. Q., Yao, L., Li, Y., Robaglia, C., and Tourneur, C. (1998) In planta transformation of pakchoi (Brassica campestris L. ssp. Chinensis) by infiltration of adult plants with Agrobacterium. Acta Hort. 467, 187–192.Google Scholar
  14. 14.
    Qing, C. M., Fan, L., Lei, Y., et al. (2000) Transformation of pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol. Breeding 6, 67–72.CrossRefGoogle Scholar
  15. 15.
    Tague, B. W. (2001) Germ-line transformation of Arabidopsis lasiocarpa. Transgenic Res. 10, 259–267.PubMedCrossRefGoogle Scholar
  16. 16.
    Trieu, A. T., Burleigh, S. H., Kardailsky, I. V., et al. (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J. 22, 531–541.PubMedCrossRefGoogle Scholar
  17. 17.
    Ye, G.-N., Stone, D., Pang, S.-Z., Creely, W., Gonzalez, K., and Hinchee, M. (1999) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J. 19, 249–257.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee, L.-Y. and Gelvin. S. B. (2004) Osa protein constitutes a strong oncogenic suppression system that can block vir-dependent transfer of IncQ plasmids between Agrobacterium cells, and the transfer of T-DNA and IncQ plasmids to plant cells. J. Bacteriol. 186, 7254–7261.PubMedCrossRefGoogle Scholar
  19. 19.
    Minnemeyer, S. L., Lightfoot, R., and Matthysse, A. G. (1991) A semiquantitative bioassay for relative virulence of Agrobacterium tumefaciens strains on Bryophyllum daigremontiana. J. Bacteriol. 123, 7723.Google Scholar
  20. 20.
    Hwang, H.-H. and Gelvin, S. B. (2004) Plant proteins that interact with VirB2, the Agrobacterium pilin protein, are required for plant transformation. Plant Cell 16, 3148–3167.PubMedCrossRefGoogle Scholar
  21. 21.
    Mysore, K. S., Nam, J., and Gelvin, S. B. (2000) An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc. Natl. Acad. Sci. USA 97, 948–953.PubMedCrossRefGoogle Scholar
  22. 22.
    Nam, J., Matthysse, A. G., and Gelvin, S. B. (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell. 9, 317–333.PubMedCrossRefGoogle Scholar
  23. 23.
    Nam, J., Mysore, K. S., Zheng, C., Knue, M., Matthysse, A. G., and Gelvin, S. B. (1999) Identification of T-DNA tagged Arabidopsis mutants that are resistant to Agrobacterium transformation. Mol. Gen. Genet. 261, 429–438.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhu, Y., Nam, J., Carpita, N. C., Matthysse, A. G., and Gelvin, S. B. (2003) Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene. Plant Physiol. 133, 1000–1010.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhu, Y., Nam, J., Humara, J. M., et al. (2003) Identification of Arabidopsis rat mutants. Plant Physiol. 132, 494–505.PubMedCrossRefGoogle Scholar
  26. 26.
    Gelvin, S. B. (2000) Agrobacterium and plant proteins involved in T-DNA transfer and integration. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 223–256.PubMedCrossRefGoogle Scholar
  27. 27.
    Gelvin, S. B. (2003) Agrobacterium and plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 67, 16–37.PubMedCrossRefGoogle Scholar
  28. 28.
    Narasimhulu, S. B., Deng, X.-B, Sarria, R., and Gelvin, S. B. (1996) Early transcription of Agrobacterium tumefaciens T-DNA genes in tobacco and maize. Plant Cell 8, 873–886.PubMedCrossRefGoogle Scholar
  29. 29.
    Mysore, K. S., Bassuner, B., Deng, X-B., et al. (1998) Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol. Plant-Microbe Interact. 11, 668–683.PubMedCrossRefGoogle Scholar
  30. 30.
    Valvekens, D., Van Montagu, M., and Van Lijsebettens, M. (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl. Acad. Sci. USA 85, 5536–5540.PubMedCrossRefGoogle Scholar
  31. 31.
    Nam, J., Matthysse, A. G., and Gelvin, S. B. (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell. 9, 317–333.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Stanton B. Gelvin

There are no affiliations available

Personalised recommendations