Skip to main content

Cloning MicroRNAs From Mammalian Tissues

  • Protocol
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 342))

Abstract

MicroRNAs (miRNAs) are ubiquitous regulators of gene expression in plants and ani-mals. Their distinctive structure, as very short RNAs with a 5′-phosphate and 3′-hydroxyl group, has enabled the development of protocols to clone miRNAs. After enrichment of these small molecules by size, serial ligation of adapter oligonucleotides to each terminus allows amplification using reverse transcription (RT)-polymerase chain reaction (PCR). Plasmid cloning of multiple miRNA sequences and subsequent DNA sequence analysis enable both bioinformatic characterization of the various miRNAs and experimental vali-dation of their accumulation in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meister, G. and Tuschl, T. (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349.

    Article  CAS  PubMed  Google Scholar 

  2. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., and Hannon, G. J. (2004) Pro-cessing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235.

    Article  CAS  PubMed  Google Scholar 

  3. Gregory, R. I., Yan, K. P., Amuthan, G., et al. (2004) The Microprocessor complex medi-ates the genesis of microRNAs. Nature 432, 235–240.

    Article  CAS  PubMed  Google Scholar 

  4. Bannerjee, D. and Slack, F. (2002) Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression. Bioessays 24, 119–129.

    Article  Google Scholar 

  5. Ambros, V. (2004) The functions of animal microRNAs. Nature 431, 350–355.

    Article  CAS  PubMed  Google Scholar 

  6. Bartel, D. (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  7. Poy, M. N., Eliasson, L., Krutzfeldt, J., et al. (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230.

    Article  CAS  PubMed  Google Scholar 

  8. Pfeffer, S., Zavolan, M., Grasser, F. A., et al. (2004) Identification of virus-encoded micro-RNAs. Science 304, 734–736.

    Article  CAS  PubMed  Google Scholar 

  9. Calin, G. A., Sevignani, C., Dumitru, C. D., et al. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101, 2999–3004.

    Article  CAS  PubMed  Google Scholar 

  10. Calin, G. A., Liu, C. G., Sevignani, C., et al. (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci. USA 101, 11,755–11,760.

    Article  CAS  PubMed  Google Scholar 

  11. Michael, M. Z., O’Connor, S. M., van Holst Pellekaan, N. G., Young, G. P., and James, R. J. (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1, 882–891.

    CAS  PubMed  Google Scholar 

  12. Eis, P. S., Tam, W., Sun, L., et al. (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA 102, 3627–3632.

    Article  CAS  PubMed  Google Scholar 

  13. Takamizawa, J., Konishi, H., Yanagisawa, K., et al. (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756.

    Article  CAS  PubMed  Google Scholar 

  14. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15, 188–200.

    Article  CAS  PubMed  Google Scholar 

  15. Pfeffer, S., Lagos-Quintana, M., and Tuschl, T. (2003) Cloning of small RNA molecules. In: Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., et al., eds.), Wiley New York, pp. 26.4.1–26.4.18.

    Google Scholar 

  16. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862.

    Article  CAS  PubMed  Google Scholar 

  17. Zucker,, M. (2003) Mfold web server for nucleic acid folding and hybridization predic-tion. Nucl. Acids Res. 31, 3406–3415.

    Article  Google Scholar 

  18. Ambros, V., Bartel, B., Bartel, D. P., et al. (2003) A uniform system for microRNA anno-tation. RNA 9, 277–279.

    Article  CAS  PubMed  Google Scholar 

  19. Griffiths-Jones S. (2004) The microRNA registry. Nucl. Acids Res. 32, D109–D111.

    Article  CAS  PubMed  Google Scholar 

  20. Ambros, V. and Lee, R. C. (2004) Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. In: Methods in Molecular Biology, vol. 265, RNA Interference, Editing, and Modification (Gott, J. M., ed.), Humana, Totowa NJ, pp. 131–158.

    Google Scholar 

  21. Chomczynski, P. and Saachi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  CAS  PubMed  Google Scholar 

  22. Chomczynski, P. (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532–534, 536-537.

    CAS  PubMed  Google Scholar 

  23. Milligan, J. F. and Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA poly-merase. In: Methods in Enzymology, vol. 180, RNA Processing Part A (Dahlberg J., Abelson J., and Simon, M., eds..), Academic New York, pp 51–62.

    Google Scholar 

  24. Schmittgen, T. D., Jiang, J., Liu, Q., and Yang, L. (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucl. Acids Res. 32, e43.

    Article  PubMed  Google Scholar 

  25. Liu, C.-G., Calin, G. A., Meloon, B., et al. (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl. Acad. Sci USA 101, 9740–9744.

    Article  CAS  PubMed  Google Scholar 

  26. Barad, O., Meiri, E., Avniel, A., et al. (2004) MicroRNA expression detected by oligo-nucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 14, 2486–2494.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Michael, M.Z. (2006). Cloning MicroRNAs From Mammalian Tissues. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology™, vol 342. Humana Press. https://doi.org/10.1385/1-59745-123-1:189

Download citation

  • DOI: https://doi.org/10.1385/1-59745-123-1:189

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-581-1

  • Online ISBN: 978-1-59745-123-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics