Skip to main content

Protein Misfolding Disorders and Rational Design of Antimisfolding Agents

  • Protocol
  • 1485 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 340))

Abstract

Compelling evidence strongly suggests that the conversion of a normal soluble protein into a β;-sheet–rich oligomeric structure and further fibril formation is the critical step in the pathogenesis of several human diseases, termed protein misfolding disorders. Therefore, a promising therapeutic strategy consists of the design of molecules that prevent the misfolding and aggregation of these proteins. In this chapter, we survey the mechanism of protein misfolding and some strategies to rationally produce inhibitors of this process.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fink, A. L. (1999) Chaperone-mediated protein folding. Physiol Rev. 79, 425–449.

    PubMed  CAS  Google Scholar 

  2. Kelly, J. W. (1996) Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6, 11–17.

    PubMed  CAS  Google Scholar 

  3. Dobson, C. M. (1999) Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332.

    PubMed  CAS  Google Scholar 

  4. Carrell, R. W. and Lomas D. A. (1997) Conformational disease. Lancet 350, 134–138.

    PubMed  CAS  Google Scholar 

  5. Soto, C. (2001) Protein misfolding and disease; protein refolding and therapy. FEBS Lett. 498, 204–207.

    PubMed  CAS  Google Scholar 

  6. Blake, C. C., Serpell, L. C., Sunde, M., Sandgren, O., and Lundgren, E. (1996) A molecular model of the amyloid fibril. Ciba Found. Symp. 199, 6–15.

    PubMed  CAS  Google Scholar 

  7. Glenner, G. G. (1981) Amyloidosis. Its role in Alzheimer’s disease and other diseases. Ann. Pathol. 1, 105–108.

    PubMed  CAS  Google Scholar 

  8. Sipe, J. D. and Cohen A. S. (2000) Review: history of the amyloid fibril. J. Struct. Biol. 130, 88–98.

    PubMed  CAS  Google Scholar 

  9. Cohen, A. S. and Connors, L. H. (1987) The pathogenesis and biochemistry of amyloidosis. J. Pathol. 151, 1–10.

    PubMed  CAS  Google Scholar 

  10. Terry, R. D. (1994) Neuropathological changes in Alzheimer disease. Prog. Brain Res. 101, 383–390.

    PubMed  CAS  Google Scholar 

  11. Forno, L. S. (1996) Neuropathology of Parkinson disease. J. Neuropathol. Exp. Neurol. 55, 259–272.

    PubMed  CAS  Google Scholar 

  12. DiFiglia, M., Sapp, E., Chase, K. O., Davies, S. W., Bates, G. P., Vonsattel, J. P., et al. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993.

    PubMed  CAS  Google Scholar 

  13. Bolton, D. C., McKinley, M. P., and Prusiner, S. B. (1982) Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311.

    PubMed  CAS  Google Scholar 

  14. Hull, R. L., Westermark, G. T., Westermark, P., and Kahn, S. E. (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab. 89, 3629–3643.

    PubMed  CAS  Google Scholar 

  15. Ghiso, J., Wisniewski, T., and Frangione, B. (1994) Unifying features of systemic and cerebral amyloidosis. Mol. Neurobiol. 8, 49–64.

    PubMed  CAS  Google Scholar 

  16. Buxbaum, J. N. and Tagoe, C. E. (2000) The genetics of the amyloidoses. Annu. Rev. Med. 51, 543–569.

    PubMed  CAS  Google Scholar 

  17. Price, D. L., Wong, P. C., Markowska, A. L., Lee, M. K., Thinakaren, G., Cleveland, D. W., et al. (2000) The value of transgenic models for the study of neurodegenerative diseases. Ann. N.Y. Acad. Sci. 920, 179–191.

    PubMed  CAS  Google Scholar 

  18. Jarrett, J. T. and Lansbury, P. T., Jr. (1993) Seeding &quote;one-dimensional crystallization&quote; of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73, 1055–1058.

    PubMed  CAS  Google Scholar 

  19. Harper, J. D. and Lansbury, P. T., Jr. (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407.

    PubMed  CAS  Google Scholar 

  20. Carrell, R. W. and Gooptu, B. (1998) Conformational changes and disease—serpins, prions and Alzheimer’s. Curr. Opin. Struct. Biol. 8, 799–809.

    PubMed  CAS  Google Scholar 

  21. Cohen, F. E. and Prusiner, S. B. (1998) Pathologic conformations of prion proteins. Annu. Rev. Biochem. 67, 793–819.

    PubMed  CAS  Google Scholar 

  22. Soto, C. (1999) Alzheimer’s and prion disease as disorders of protein conformation: implications for the design of novel therapeutic approaches. J. Mol. Med. 77, 412–418

    PubMed  CAS  Google Scholar 

  23. Serpell, L. C., Sunde, M., Fraser, P. E., Luther, P. K., Morris, E. P., Sangren, O., et al. (1995) Examination of the structure of the transthyretin amyloid fibril by image reconstruction from electron micrographs. J. Mol. Biol. 254, 113–118.

    PubMed  CAS  Google Scholar 

  24. Soto, C. (1999) Plaque busters: strategies to inhibit amyloid formation in Alzheimer’s disease. Mol. Med. Today 5, 343–350.

    PubMed  CAS  Google Scholar 

  25. LeVine, H. III and Scholten, J. D. (1999) Screening for pharmacologic inhibitors of amyloid fibril formation. Meth. Enzymol. 309, 467–476.

    PubMed  CAS  Google Scholar 

  26. Lorenzo, A. and Yankner, B. A. (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc. Natl. Acad. Sci. USA 91, 12243–12247.

    PubMed  CAS  Google Scholar 

  27. Wood, S. J., MacKenzie, L., Maleeff, B., Hurle, M. R., and Wetzel, R. (1996) Selective inhibition of Aβ; fibril formation. J. Biol. Chem. 271, 4086–4092.

    PubMed  CAS  Google Scholar 

  28. Kisilevsky, R., Lemieux, L. J., Fraser, P. E., Kong, X., Hultin, P. G., and Szarek, W. A. (1995) Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer’s disease. Nat. Med. 1, 143–148.

    PubMed  CAS  Google Scholar 

  29. Allsop, D., Gibson, G., Martin, I. K., Moore, S., Turnbull, S., and Twyman, L. J. (2001) 3-p-Toluoyl-2-[4’-(3-diethylaminopropoxy)-phenyl]-benzofuran and 2-[4’-(3-diethylaminopropoxy)-phenyl]-benzofuran do not act as surfactants or micelles when inhibiting the aggregation of beta-amyloid peptide. Bioorg. Med. Chem. Lett. 11, 255–257.

    PubMed  CAS  Google Scholar 

  30. Tomiyama, T., Asano, S., Suwa, Y., Morita, T., Kataoka, K., Mori, H., and Endo N. (1994) Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem. Biophys. Res. Commun. 204, 76–83.

    PubMed  CAS  Google Scholar 

  31. Pappolla, M., Bozner, P., Soto, C., Shao, H., Robakis, N. K., Zagorski, M., et al. (1998) Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J. Biol. Chem. 273, 7185–7188.

    PubMed  CAS  Google Scholar 

  32. Salomon, A. R., Marcinowski, K. J., Friedland, R. P., and Zagorski, M. G. (1996) Nicotine inhibits amyloid formation by the beta-peptide. Biochemistry 35, 13568–13578.

    PubMed  CAS  Google Scholar 

  33. Hosoda, T., Nakajima, H., and Honjo, H. (2001) Estrogen protects neuronal cells from amyloid beta-induced apoptotic cell death. Neuroreport 12, 1965–1970.

    PubMed  CAS  Google Scholar 

  34. Gervais, F., Chalifour, R., Garceau, D., Kong, X., Laurin, J., Mclaughlin, R., et al. (2001) Glycosaminoglycan mimetics: a therapeutic approach to cerebral amyloid angiopathy. Amyloid 8, 28–35.

    PubMed  CAS  Google Scholar 

  35. De Felice, F. G., Houzel, J. C., Garcia-Abreu, J., Louzada, P. R., Jr., Afonso, R. C., Meirelles, M. N., et al. (2001) Inhibition of Alzheimer’s disease beta-amyloid aggregation, neurotoxicity, and in vivo deposition by nitrophenols: implications for Alzheimer’s therapy. FASEB J. 15, 1297–1299.

    PubMed  Google Scholar 

  36. Forloni, G., Colombo, L., Girola, L., Tagliavini, F., and Salmona, M. (2001) Antiamyloidogenic activity of tetracyclines: studies in vitro. FEBS Lett. 487, 404–407.

    PubMed  CAS  Google Scholar 

  37. Merlini, G., Ascari, E., Amboldi, N., Bellotti, V., Arbustini, E., Perfetti, V., et al. (1995) Interaction of the anthracycline 4’-iodo-4’-deoxydoxorubicin with amyloid fibrils: inhibition of amyloidogenesis. Proc. Natl. Acad. Sci. USA 92, 2959–2963.

    PubMed  CAS  Google Scholar 

  38. Cherny, R. A., Atwood, C. S., Xilinas, M. E., Gray, D. N., Jones, W. D., McLean, C. A., et al. (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30, 665–676.

    PubMed  CAS  Google Scholar 

  39. Lim, G. P., Yang, F., Chu, T. Chen, P., Beech, W., Teter, B., et al. (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci. 20, 5709–5714

    PubMed  CAS  Google Scholar 

  40. Nakagami, Y., Nishimura, S., Murasugi, T., Kaneko, I., Meguro, M., Marumoto, S., et al. (2002) A novel beta-sheet breaker, RS-0406, reverses amyloid betainduced cytotoxicity and impairment of long-term potentiation in vitro. Br. J. Pharmacol. 137, 676–682.

    PubMed  CAS  Google Scholar 

  41. Wisniewski, T. and Frangione, B. (1992) Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci. Lett. 135, 235–238.

    PubMed  CAS  Google Scholar 

  42. Pepys, M. B., Dyck, R. F., De Beer, F. C., Skinner, M., and Cohen, A. S. (1979) Binding of serum amyloid P-component (SAP) by amyloid fibrils. Clin. Exp. Immunol. 38, 284–293.

    PubMed  CAS  Google Scholar 

  43. Snow, A. D., Willmer, J., and Kisilevsky, R. (1987) Sulfated glycosaminoglycans: a common constituent of all amyloids? Lab. Invest. 56, 120–123.

    PubMed  CAS  Google Scholar 

  44. Frangione, B., Wisniewski, T., and Ghiso, J. (1994) Chaperoning Alzheimer’s amyloids. Neurobiol. Aging 15, S97–S99.

    PubMed  Google Scholar 

  45. Soto, C., Ghiso, J., and Frangione, B. (1997) Alzheimer’s amyloid-β aggregation is modulated by the interaction of multiple factors. Alzheimer’s Res. 3, 215–222.

    Google Scholar 

  46. Holtzman, D. M. (2003) Potential role of endogenous and exogenous amyloidbeta binding molecules in the pathogenesis, diagnosis, and treatment of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 17, 151–153.

    PubMed  Google Scholar 

  47. Evans, K. C., Berger, E. P., Cho, C. G., Weisgraber, K. H., and Lansbury, P. T., Jr. (1995) Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc. Natl. Acad. Sci. USA 92, 763–767.

    PubMed  CAS  Google Scholar 

  48. Matsubara, E., Soto, C., Governale, S., Frangione, B., and Ghiso, J. (1996) Apolipoprotein J and Alzheimer’s amyloid beta solubility. Biochem. J. 316, 671–679.

    PubMed  CAS  Google Scholar 

  49. Schwarzman, A. L., Gregori, L., Vitek, M. P., Lyubski, S., Strittmatter, W. J., Enghilde, J. J., et al. (1994) Transthyretin sequesters amyloid beta protein and prevents amyloid formation. Proc. Natl. Acad. Sci. USA 91, 8368–8372.

    PubMed  CAS  Google Scholar 

  50. Janciauskiene, S., Garcia, d. F., Carlemalm, E., Dahlback, B., and Eriksson, S. (1995) Inhibition of Alzheimer beta-peptide fibril formation by serum amyloid P component. J. Biol. Chem. 270, 26041–26044.

    PubMed  CAS  Google Scholar 

  51. Janciauskiene, S., Rubin, H., Lukacs, C. M., and Wright, H. T. (1998) Alzheimer’s peptide Abeta1-42 binds to two beta-sheets of alpha1-antichymotrypsin and transforms it from inhibitor to substrate. J. Biol. Chem. 273, 28360–28364.

    PubMed  CAS  Google Scholar 

  52. Castillo, G. M., Lukito, W., Peskind, E., Raskind, M., Kirschner, D. A., Yee, A. G., et al. (2000) Laminin inhibition of beta-amyloid protein (Abeta) fibrillogenesis and identification of an Abeta binding site localized to the globular domain repeats on the laminin a chain. J. Neurosci. Res. 62, 451–462.

    PubMed  CAS  Google Scholar 

  53. Bronfman, F. C., Garrido, J., Alvarez, A., Morgan, C., and Inestrosa, N. C. (1996) Laminin inhibits amyloid-beta-peptide fibrillation. Neurosci. Lett. 218, 201–203.

    PubMed  CAS  Google Scholar 

  54. Castano, E. M., Prelli, F., Wisniewski, T., Golabek, A., Kumar, R. A., Soto, C., et al. (1995) Fibrillogenesis in Alzheimer’s disease of amyloid beta peptides and apolipoprotein E. Biochem. J. 306, 599–604.

    PubMed  CAS  Google Scholar 

  55. Ma, J., Yee, A., Brewer, H. B., Jr., Das, S., and Potter, H. (1994) Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 372, 92–94.

    PubMed  CAS  Google Scholar 

  56. Hamazaki, H. (1995) Amyloid P component promotes aggregation of Alzheimer’s beta-amyloid peptide. Biochem. Biophys. Res. Commun. 211, 349–353.

    PubMed  CAS  Google Scholar 

  57. Hamilton, J. A. and Benson, M. D. (2001) Transthyretin: a review from a structural perspective. Cell Mol. Life Sci. 58, 1491–1521.

    PubMed  CAS  Google Scholar 

  58. Saraiva, M. J. (2001) Transthyretin amyloidosis: a tale of weak interactions. FEBS Lett. 498, 201–203.

    PubMed  CAS  Google Scholar 

  59. Golabek, A., Marques, M. A., Lalowski, M., and Wisniewski, T. (1995) Amyloid beta binding proteins in vitro and in normal human cerebrospinal fluid. Neurosci. Lett. 191, 79–82.

    PubMed  CAS  Google Scholar 

  60. Narindrasorasak, S., Altman, R. A., Gonzalez-DeWhitt, P., Greenberg, B. D., and Kisilevsky, R. (1995) An interaction between basement membrane and Alzheimer amyloid precursor proteins suggests a role in the pathogenesis of Alzheimer’s disease. Lab. Invest. 72, 272–282.

    PubMed  CAS  Google Scholar 

  61. Morgan, C., Bugueno, M. P., Garrido, J., and Inestrosa, N. C. (2002) Laminin affects polymerization, depolymerization and neurotoxicity of Abeta peptide. Peptides 23, 1229–1240.

    PubMed  CAS  Google Scholar 

  62. Weisgraber, K. H., Roses, A. D., and Strittmatter, W. J. (1994) The role of apolipoprotein E in the nervous system. Curr. Opin. Lipidol. 5, 110–116.

    PubMed  CAS  Google Scholar 

  63. Ohman, T., Dang, N., LeBoeuf, R. C., Furlong, C. E., and Fukuchi, K. (1996) Expression of apolipoprotein E inhibits aggregation of the C-terminal fragments of beta-amyloid precursor protein. Neurosci. Lett. 210, 65–68.

    PubMed  CAS  Google Scholar 

  64. Mazur-Kolecka, B., Frackowiak, J., and Wisniewski, H. M. (1995) Apolipoproteins E3 and E4 induce, and transthyretin prevents accumulation of the Alzheimer’s beta-amyloid peptide in cultured vascular smooth muscle cells. Brain Res. 698, 217–222.

    PubMed  CAS  Google Scholar 

  65. Roses, A. D. (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu. Rev. Med. 47, 387–400.

    PubMed  CAS  Google Scholar 

  66. Ohm, T. G., Scharnagl, H., Marz, W., and Bohl, J. (1999) Apolipoprotein E isoforms and the development of low and high Braak stages of Alzheimer’s disease-related lesions. Acta Neuropathol. (Berl) 98, 273–280.

    CAS  Google Scholar 

  67. Bales, K. R., Dodart, J. C., DeMattos, R. B., Holtzman, D. M., and Paul, S. M. (2002) Apolipoprotein E, amyloid, and Alzheimer disease. Mol. Interv. 2, 363–375, 339.

    PubMed  CAS  Google Scholar 

  68. Holtzman, D. M., Fagan, A. M., Mackey, B., Tenkova, T., Sartorius, L., Paul, S. M., et al. (2000) Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer’s disease model. Ann. Neurol. 47, 739–747.

    PubMed  CAS  Google Scholar 

  69. Hartman, R. E., Laurer, H., Longhi, L., Bales, K. R., Paul, S. M., McIntosh, T. K., et al. (2002) Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer’s disease. J. Neurosci. 22, 10083–10087.

    PubMed  CAS  Google Scholar 

  70. Calero, M., Rostagno, A., Frangione, B., and Ghiso, J. (2005) Clusterin and Alzheimer’s disease. Subcell. Biochem. 38, 273–298.

    PubMed  CAS  Google Scholar 

  71. Choi-Miura, N. H., Ihara, Y., Fukuchi, K., Takeda, M., Nakano, Y., Tobe, T., and Tomita, M. (1992) SP-40,40 is a constituent of Alzheimer’s amyloid. Acta Neuropathol. (Berl) 83, 260–264.

    CAS  Google Scholar 

  72. Kida, E., Pluta, R., Lossinsky, A. S., Golabek, A. A., Choi-Miura, N. H., Wisniewski, H. M., et al. (1995) Complete cerebral ischemia with short-term survival in rat induced by cardiac arrest. II. Extracellular and intracellular accumulation of apolipoproteins E and J in the brain. Brain Res. 674, 341–346.

    PubMed  CAS  Google Scholar 

  73. Matsubara, E., Frangione, B., and Ghiso, J. (1995) Characterization of apolipoprotein J-Alzheimer’s A beta interaction. J. Biol. Chem. 270, 7563–7567.

    PubMed  CAS  Google Scholar 

  74. Giannakopoulos, P., Kovari, E., French, L. E., Viard, I., Hof, P. R., and Bouras, C. (1998) Possible neuroprotective role of clusterin in Alzheimer’s disease: a quantitative immunocytochemical study. Acta Neuropathol. (Berl) 95, 387–394.

    CAS  Google Scholar 

  75. DeMattos, R. B., Cirrito, J. R., Parsadanian, M., May, P. C., O’Dell, M. A., Taylor, J. W., et al. (2004) ApoE and Clusterin Cooperatively Suppress Abeta Levels and Deposition. Evidence that ApoE regulates extracellular abeta metabolism in vivo. Neuron 41, 193–202.

    Google Scholar 

  76. Pepys, M. B., Baltz, M. L., De Beer, F. C., Dyck, R. F., Holford, S., Breathnach, S. M., et al. (1982) Biology of serum amyloid P component. Ann. N.Y. Acad. Sci. 389, 286–298.

    PubMed  CAS  Google Scholar 

  77. Pepys, M. B., Rademacher, T. W., Amatayakul-Chantler, S., Williams, P., Noble, G. E., Hutchinson, W. L., et al. (1994) Human serum amyloid P component is an invariant constituent of amyloid deposits and has a uniquely homogeneous glycostructure. Proc. Natl. Acad. Sci. USA 91, 5602–5606.

    PubMed  CAS  Google Scholar 

  78. Tennent, G. A., Lovat, L. B., and Pepys, M. B. (1995) Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc. Natl. Acad. Sci. USA 92, 4299–4303.

    PubMed  CAS  Google Scholar 

  79. Botto, M., Hawkins, P. N., Bickerstaff, M. C., Herbert, J., Bygrave, A. E., McBride, A., et al. (1997) Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nat. Med. 3, 855–859

    PubMed  CAS  Google Scholar 

  80. Pepys, M. B., Herbert, J., Hutchinson, W. L., Tennent, G. A., Lachmann, H. J., Gallimore, J. R., et al. (2002) Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417, 254–259.

    PubMed  CAS  Google Scholar 

  81. Abraham, C. R. and Potter, H. (1989) Alpha 1-antichymotrypsin in brain aging and disease. Prog. Clin. Biol. Res. 317, 1037–1048.

    PubMed  CAS  Google Scholar 

  82. Aksenova, M. V., Aksenov, M. Y., Butterfield, D. A., and Carney, J. M. (1996) alpha-1-antichymotrypsin interaction with A beta (1–40) inhibits fibril formation but does not affect the peptide toxicity. Neurosci. Lett. 211, 45–48.

    PubMed  CAS  Google Scholar 

  83. Janciauskiene, S., Eriksson, S., and Wright, H. T. (1996) A specific structural interaction of Alzheimer’s peptide A beta 1–42 with alpha 1-antichymotrypsin. Nat. Struct. Biol. 3, 668–671.

    PubMed  CAS  Google Scholar 

  84. Nilsson, L. N., Bales, K. R., DiCarlo, G., Gordon, M. N., Morgan, D., Paul, S. M., et al. (2001) Alpha-1-antichymotrypsin promotes beta-sheet amyloid plaque deposition in a transgenic mouse model of Alzheimer’s disease. J. Neurosci. 21, 1444–1451.

    PubMed  CAS  Google Scholar 

  85. Tjernberg, L. O., Naslund, J., Lindqvist, F., Johansson, J., Karlstrom, A. R., Thyberg, J., et al. (1996) Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 271, 8545–8548.

    PubMed  CAS  Google Scholar 

  86. Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C. L., and Beyreuther, K. (1992) Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer’s disease beta A4 peptides. J. Mol. Biol. 228, 460–473.

    PubMed  CAS  Google Scholar 

  87. Soto, C., Castano, E. M., Frangione, B., and Inestrosa, N. C. (1995) The alphahelical to beta-strand transition in the amino-terminal fragment of the amyloid beta-peptide modulates amyloid formation. J. Biol. Chem. 270, 3063–3067.

    PubMed  CAS  Google Scholar 

  88. Wood, S. J., Wetzel, R., Martin, J. D., and Hurle, M. R. (1995) Prolines and amyloidogenicity in fragments of the Alzheimer’s peptide beta/A4. Biochemistry 34, 724–730.

    PubMed  CAS  Google Scholar 

  89. Soto, C., Kindy, M. S., Baumann, M., and Frangione, B. (1996) Inhibition of Alzheimer’s amyloidosis by peptides that prevent beta-sheet conformation. Biochem. Biophys. Res. Commun. 226, 672–680.

    PubMed  CAS  Google Scholar 

  90. Soto, C., Sigurdsson, E. M., Morelli, L., Kumar, R. A., Castano, E. M., and Frangione, B. (1998) Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat. Med. 4, 822–826.

    PubMed  CAS  Google Scholar 

  91. Sigurdsson, E. M., Permanne, B., Soto, C., Wisniewski, T., and Frangione, B. (2000) In vivo reversal of amyloid-beta lesions in rat brain. J. Neuropathol. Exp. Neurol. 59, 11–17.

    PubMed  CAS  Google Scholar 

  92. Permanne, B., Adessi, C., Saborio, G. P., Fraga, S., Frossard, M. J., Van Dorpe, J., et al. (2002) Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer’s disease by treatment with a beta-sheet breaker peptide. FASEB J. 16, 860–862.

    PubMed  CAS  Google Scholar 

  93. Chacon, M. A., Barria, M. I., Soto, C., and Inestrosa, N. C. (2004) Beta-sheet breaker peptide prevents Abeta-induced spatial memory impairments with partial reduction of amyloid deposits. Mol. Psychiatry 9, 953–961.

    PubMed  CAS  Google Scholar 

  94. Adessi, C., Frossard, M. J., Boissard, C., Fraga, S., Bieler, S., Ruckle, T., et al. (2003) Pharmacological profiles of peptide drug candidates for the treatment of Alzheimer’s disease. J. Biol. Chem. 278, 13905–13911.

    PubMed  CAS  Google Scholar 

  95. Ghanta, J., Shen, C. L., Kiessling, L. L., and Murphy, R. M. (1996) A strategy for designing inhibitors of beta-amyloid toxicity. J. Biol. Chem. 271, 29525–29528.

    PubMed  CAS  Google Scholar 

  96. Pallitto, M. M., Ghanta, J., Heinzelman, P., Kiessling, L. L., and Murphy, R. M. (1999) Recognition sequence design for peptidyl modulators of beta-amyloid aggregation and toxicity. Biochemistry 38, 3570–3578.

    PubMed  CAS  Google Scholar 

  97. Findeis, M. A., Musso, G. M., Arico-Muendel, C. C., Benjamin, H. W., Hundal, A. M., Lee, J. J., et al. (1999) Modified-peptide inhibitors of amyloid beta-peptide polymerization. Biochemistry 38, 6791–6800.

    PubMed  CAS  Google Scholar 

  98. Findeis, M. A., Lee, J. J., Kelley, M., Wakefield, J. D., Zhang, M. H., Chin, J., et al. (2001) Characterization of cholyl-leu-val-phe-phe-ala-OH as an inhibitor of amyloid beta-peptide polymerization. Amyloid 8, 231–241.

    PubMed  CAS  Google Scholar 

  99. Hughes, E., Burke, R. M., and Doig, A. J. (2000) Inhibition of toxicity in the beta-amyloid peptide fragment beta-(25-35) using N-methylated derivatives: a general strategy to prevent amyloid formation. J. Biol. Chem. 275, 25109–25115.

    PubMed  CAS  Google Scholar 

  100. Gordon, D. J., Tappe, R., and Meredith, S. C. (2002) Design and characterization of a membrane permeable N-methyl amino acid-containing peptide that inhibits Abeta1-40 fibrillogenesis. J. Pept. Res. 60, 37–55.

    PubMed  CAS  Google Scholar 

  101. Blanchard, B. J., Konopka, G., Russell, M., and Ingram, V. M. (1997) Mechanism and prevention of neurotoxicity caused by beta-amyloid peptides: relation to Alzheimer’s disease. Brain Res. 776, 40–50.

    PubMed  CAS  Google Scholar 

  102. Blanchard, B. J., Hiniker, A. E., Lu, C. C., Margolin, Y., Yu, A. S., and Ingram, V. M. (2000) Elimination of amyloid beta neurotoxicity. J. Alzheimers. Dis. 2, 137–149.

    PubMed  CAS  Google Scholar 

  103. Adessi, C. and Soto, C. (2002) Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr. Med. Chem. 9, 963–978.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Estrada, L.D., Yowtak, J., Soto, C. (2006). Protein Misfolding Disorders and Rational Design of Antimisfolding Agents. In: Guerois, R., de la Paz, M.L. (eds) Protein Design. Methods in Molecular Biology, vol 340. Humana Press. https://doi.org/10.1385/1-59745-116-9:277

Download citation

  • DOI: https://doi.org/10.1385/1-59745-116-9:277

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-585-9

  • Online ISBN: 978-1-59745-116-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics