Skip to main content

Multiple Sequence Alignment as a Guideline for Protein Engineering Strategies

  • Protocol
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 340))

Abstract

Many proteins lack the thermodynamic stability and/or solubility that is required for their use in a desired application. For this reason, it can be advantageous to improve these qualities through rational protein engineering. An effective means for achieving this goal is to use sequence alignment analysis to select amino acid substitutions that are likely to increase the thermodynamic stability or solubility of a protein. Advantages of using this approach are that generally only a small number of substitutions need to be tested, these substitutions are rarely debilitating to protein function, and knowledge of the three-dimensional structure of the protein of interest is not required. This chapter will describe approaches that have been used to exploit the information contained in sequence alignments for the engineering of improved protein properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eijsink, V. G., Bjork, A., Gaseidnes, S., Sirevag, R., Synstad, B., van den Burg, B., et al. (2004) Rational engineering of enzyme stability. J. Biotechnol. 113, 105–120.

    Article  PubMed  CAS  Google Scholar 

  2. Lehmann, M. and Wyss, M. (2001) Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr. Opin. Biotechnol. 12, 371–375.

    Article  PubMed  CAS  Google Scholar 

  3. van den Burg, B. and Eijsink, V. G. (2002) Selection of mutations for increased protein stability. Curr. Opin. Biotechnol. 13, 333–337.

    Article  PubMed  Google Scholar 

  4. Vieille, C. and Zeikus, G. J. (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1–43.

    Article  PubMed  CAS  Google Scholar 

  5. Arnold, F. H., Wintrode, P. L., Miyazaki, K., and Gershenson, A. (2001) How enzymes adapt: lessons from directed evolution. Trends Biochem. Sci. 26, 100–106.

    Article  PubMed  CAS  Google Scholar 

  6. Steipe, B., Schiller, B., Pluckthun, A., and Steinbacher, S. (1994) Sequence statis-tics reliably predict stabilizing mutations in a protein domain. J. Mol. Biol. 240, 188–192.

    Article  PubMed  CAS  Google Scholar 

  7. Wirtz, P. and Steipe, B. (1999) Intrabody construction and expression III: engi-neering hyperstable V(H) domains. Protein Sci. 8, 2245–2250.

    Article  PubMed  CAS  Google Scholar 

  8. Rath, A. and Davidson, A. R. (2000) The design of a hyperstable mutant of the Abp1p SH3 domain by sequence alignment analysis. Protein Sci. 9, 2457–2469.

    Article  PubMed  CAS  Google Scholar 

  9. Wang, Q., Buckle, A. M., Foster, N. W., Johnson, C. M., and Fersht, A. R. (1999) Design of highly stable functional GroEL minichaperones. Protein Sci. 8, 2186–2193.

    Article  PubMed  CAS  Google Scholar 

  10. Nikolova, P. V., Henckel, J., Lane, D. P., and Fersht, A. R. (1998) Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability. Proc. Natl. Acad. Sci. USA 95, 14675–14680.

    Article  PubMed  CAS  Google Scholar 

  11. Lehmann, M., Kostrewa, D., Wyss, M., Brugger, R., D’Arcy, A., Pasamontes, L., et al. (2000) From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng. 13, 49–57.

    Article  PubMed  CAS  Google Scholar 

  12. Lehmann, M., Loch, C., Middendorf, A., Studer, D., Lassen, S. F., Pasamontes, L., et al. (2002) The consensus concept for thermostability engineering of pro-teins: further proof of concept. Protein Eng. 15, 403–411.

    Article  PubMed  CAS  Google Scholar 

  13. Jiang, X., Kowalski, J., and Kelly, J. W. (2001) Increasing protein stability using a rational approach combining sequence homology and structural alignment: sta-bilizing the WW domain. Protein Sci. 10, 1454–1465.

    Article  PubMed  CAS  Google Scholar 

  14. Mosavi, L. K., Minor, D. L., Jr., and Peng, Z. Y. (2002) Consensus-derived structural determinants of the ankyrin repeat motif. Proc. Natl. Acad. Sci. USA 99, 16029–16034.

    Article  PubMed  CAS  Google Scholar 

  15. Ito, T. and Wagner, G. (2004) Using codon optimization, chaperone co-expression, and rational mutagenesis for production and NMR assignments of human eIF2 alpha. J. Biomol. NMR 28, 357–367.

    Article  PubMed  CAS  Google Scholar 

  16. Malissard, M. and Berger, E. G. (2001) Improving solubility of catalytic domain of human beta-1,4-galactosyltransferase 1 through rationally designed amino acid replacements. Eur. J. Biochem. 268, 4352–4358.

    Article  PubMed  CAS  Google Scholar 

  17. Sun, Z. Y., Dotsch, V., Kim, M., Li, J., Reinherz, E. L., and Wagner, G. (1999) Functional glycan-free adhesion domain of human cell surface receptor CD58: design, production and NMR studies. EMBO J. 18, 2941–2949.

    Article  PubMed  CAS  Google Scholar 

  18. Irving, J. A., Askew, D. J., and Whisstock, J. C. (2004) Computational analysis of evolution and conservation in a protein superfamily. Methods 32, 73–92.

    Article  PubMed  CAS  Google Scholar 

  19. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  20. Clamp, M., Cuff, J., Searle, S. M., and Barton, G. J. (2004) The Jalview Java alignment editor. Bioinformatics 20, 426–427.

    Article  PubMed  CAS  Google Scholar 

  21. Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L., and Sonnhammer, E. L. (2000) The Pfam protein families database. Nucleic Acids Res. 28, 263–266.

    Article  PubMed  CAS  Google Scholar 

  22. Schultz, J., Milpetz, F., Bork, P., and Ponting, C. P. (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857–5864.

    Article  PubMed  CAS  Google Scholar 

  23. Sander, C. and Schneider, R. (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9, 56–68.

    Article  PubMed  CAS  Google Scholar 

  24. Henikoff, S. and Henikoff, J. G. (1994) Position-based sequence weights. J. Mol. Biol. 243, 574–578.

    Article  PubMed  CAS  Google Scholar 

  25. Lewis, H. A., Zhao, X., Wang, C., Sauder, J. M., Rooney, I., Noland, B. W., et al. (2005) Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J. Biol. Chem. 280, 1346–1353.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Davidson, A.R. (2006). Multiple Sequence Alignment as a Guideline for Protein Engineering Strategies. In: Guerois, R., de la Paz, M.L. (eds) Protein Design. Methods in Molecular Biology, vol 340. Humana Press. https://doi.org/10.1385/1-59745-116-9:171

Download citation

  • DOI: https://doi.org/10.1385/1-59745-116-9:171

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-585-9

  • Online ISBN: 978-1-59745-116-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics