Skip to main content

Design of Miniproteins by the Transfer of Active Sites Onto Small-Size Scaffolds

  • Protocol
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 340))

Abstract

Natural miniproteins (e.g., animal toxins, protease inhibitors, defensins) can express specific and powerful biological activities by using a stable and minimal (<80 amino acids) structural motif. Artificial activities have been designed on these miniscaffolds by transferring previously identified protein active sites into regions structurally compatible with the site and permissive for sequence mutations. These newly designed miniproteins, presenting a specific and high activity within a small size and well-defined three-dimensional structure, represent novel tools in biology, biotechnology, and medical sciences, and are also useful intermediates to develop new therapeutic agents. The different steps used to design and characterize new bioactive miniproteins are here described in detail. Two successful examples are here reported. The first one is a metal-binding miniprotein (MBP, 37 residues), which possesses a metal specificity resembling that of natural carbonic anhydrase; the second is a CD4 mimic (CD4M33, 27 residues), which is a powerful inhibitor of HIV-1 entry but also a fully functional substitute of the human receptor CD4 and, hence, a potential component of an AIDS vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bryson, J. W., Betz, S. F., Lu, H. S., Suich, D. J., Zhou, H. X., O’Neil, K. T., et al. (1995) Protein design: a hierarchic approach. Science 270, 935–941.

    Article  PubMed  CAS  Google Scholar 

  2. Hill, R. B., Raleigh, D. P., Lombardi, A., and DeGrado, W. F. (2000) De novo design of helical bundles as models for understanding protein folding and function. Acc. Chem. Res. 33, 745–754.

    Article  PubMed  CAS  Google Scholar 

  3. Baltzer, L. and Nilsson, J. (2001) Emerging principles of de novo catalyst design. Curr. Opin. Biotechnol. 12, 355–360.

    Article  PubMed  CAS  Google Scholar 

  4. Petrounia, I. P. and Arnold, F. H. (2000) Designed evolution of enzymatic properties. Curr. Opin. Biotechnol. 11, 325–330.

    Article  PubMed  CAS  Google Scholar 

  5. Tobin, M. B., Gustafsson, C., and Huisman, G. W. (2000) Directed evolution: the’ rational’ basis for’ irrational’ design. Curr. Opin. Struct. Biol. 10, 421–427.

    Article  PubMed  CAS  Google Scholar 

  6. Martin, L. and Vita, C. (2000) Engineering novel bioactive miniproteins from small size natural and de novo designed scaffolds. Curr. Protein. Pept. Sci. 1, 403–430.

    Article  PubMed  CAS  Google Scholar 

  7. Mathonet, P. and Fastrez, J. (2004) Engineering of non-natural receptors. Curr. Opin. Struct. Biol. 14, 505–511.

    Article  PubMed  CAS  Google Scholar 

  8. Betz, S. F., Raleigh, D. P., DeGrado, W. F., Lovejoy, B., Anderson, D., Ogihara, N., et al. (1996) Crystallization of a designed peptide from a molten globule ensemble. Fold. Des. 1, 57–64.

    Article  PubMed  CAS  Google Scholar 

  9. Clackson, T. and Wells, J. A. (1995) A hot spot of binding energy in a hormonereceptor interface. Science 267, 383–386.

    Article  PubMed  CAS  Google Scholar 

  10. Martin, L., Barthe, P., Combes, O., Roumestand, C. and Vita, C. (2000) Engineering novel bioactive mini-proteins on natural scaffolds. Tetrahedron 56, 9451–9460.

    Article  CAS  Google Scholar 

  11. Vita, C., Roumestand, C., Toma, F., and Menez, A. (1995) Scorpion toxins as natural scaffolds for protein engineering. Proc. Natl. Acad. Sci. USA 92, 6404–6408.

    Article  PubMed  CAS  Google Scholar 

  12. Wütrich, K. (1986). NMR of Proteins and Nucleic Acids, Wiley, New York.

    Google Scholar 

  13. Pons, J. L., Mallliavin, T. E., and Delsuc, M. A. (1996) Gifa V.4: a complete package for NMR data set processing. J. Biomol. NMR 8, 445–452.

    Article  PubMed  CAS  Google Scholar 

  14. Roumestand, C., Delay, C., Gavin, J. A., and Canet, D. (1999) A practical approach to the implementation of selectivity in homonuclear multidimensional NMR with frequency selective-filtering techniques. Application to the chemical structure elucidation of complex oligosaccharides. Magn. Reson. Chem. 37, 451–478.

    Article  CAS  Google Scholar 

  15. Guntert, P., Mumenthaler, C., and Wuthrich, K. (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298.

    Article  PubMed  CAS  Google Scholar 

  16. Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham III, T. E., DeBolt, S., et al. (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp. Phys. Commun. 91, 1–41.

    Article  CAS  Google Scholar 

  17. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. R. J., et al. (1995) A second generation force field for the simulation of proteins and nucelic acids. J. Am. Chem. Soc. 117, 5179–5197.

    Article  CAS  Google Scholar 

  18. Moore, J. P., McKeating, J. A., Weiss, R. A., and Sattentau, Q. J. (1990) Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250, 1139–1142.

    Article  PubMed  CAS  Google Scholar 

  19. Charneau, P., Mirambeau, G., Roux, P., Paulous, S., Buc, H., and Clavel, F. (1994) HIV-1 reverse transcription. A termination step at the center of the genome. J. Mol. Biol. 241, 651–662.

    Article  PubMed  CAS  Google Scholar 

  20. Lusso, P., Cocchi, F., Balotta, C., Markham, P. D., Louie, A., Farci, P., et al. (1995) Growth of macrophage-tropic and primary human immunodeficiency virus type 1 (HIV-1) isolates in a unique CD4+ T-cell clone (PM1): failure to downregulate CD4 and to interfere with cell-line-tropic HIV-1. J. Virol. 69, 3712–3720.

    PubMed  CAS  Google Scholar 

  21. Bontems, F., Roumestand, C., Gilquin, B., Menez, A., and Toma, F. (1991) Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science 254, 1521–1523.

    Article  PubMed  CAS  Google Scholar 

  22. Miller, C., Moczydlowski, E., Latorre, R., and Phillips, M. (1985) Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature 313, 316–318.

    Article  PubMed  CAS  Google Scholar 

  23. Vita, C., Bontems, F., Bouet, F., Tauc, M., Poujeol, P., Vatanpour, H., et al. (1993) Synthesis of charybdotoxin and of two N-terminal truncated analogues. Structural and functional characterisation. Eur. J. Biochem. 217, 157–169.

    Article  PubMed  CAS  Google Scholar 

  24. Tainer, J. A., Roberts V. A., and Getzoff, E. D. (1991) Metal-binding sites in proteins. Curr. Opin. Biotechnol. 2, 582–591.

    Article  PubMed  CAS  Google Scholar 

  25. Barondeau, D. P. and Getzoff, E. D. (2004) Structural insights into protein-metal ion partnerships. Curr. Opin. Biotechnol. 14, 765–774.

    CAS  Google Scholar 

  26. Hellinga, H. W. (1998) The construction of metal centers in proteins by rational design. Fold. Des. 3, 1–8.

    Article  Google Scholar 

  27. Lu, Y., Berry, S. M., and Pfister, T. D. (2001) Engineering novel metalloproteins: design of metal-binding sites into native protein scaffolds. Chem. Rev. 101, 3047–3080.

    Article  PubMed  CAS  Google Scholar 

  28. Lombardi, A., Summa, C. M., Geremia, S., Randaccio, L., Pavone, V., and DeGrado, W. F. (2000) Inaugural article: retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc. Natl. Acad. Sci. USA 97, 6298–6305.

    Article  PubMed  CAS  Google Scholar 

  29. Klemba, M., Gardner, K. H., Marino, S., Clarke, N. D., and Regan, L. (1995) Novel metal-binding proteins by design. Nat. Struct. Biol. 2, 368–373.

    Article  PubMed  CAS  Google Scholar 

  30. Pierret, B., Virelizier, H., and Vita, C. (1995) Synthesis of a metal binding protein designed on the alpha/beta scaffold of charybdotoxin. Int. J. Pept. Protein Res. 46, 471–479.

    Article  PubMed  CAS  Google Scholar 

  31. Lindskog, S. and Nyman, P. O. (1964) Metal-binding properties of human erythrocyte carbonic anhydrases. Biochim. Biophys. Acta 85, 462–474.

    PubMed  CAS  Google Scholar 

  32. Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J., and Hendrickson, W. A. (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659.

    Article  PubMed  CAS  Google Scholar 

  33. Sweet, R. W., Truneh, A., and Hendrickson, W. A. (1991) CD4: its structure, role in immune function and AIDS pathogenesis, and potential as a pharmacological target. Curr. Opin. Biotechnol. 2, 622–633.

    Article  PubMed  CAS  Google Scholar 

  34. Moebius, U., Clayton, L. K., Abraham, S., Harrison, S. C., and Reinherz, E. L. (1992) The human immunodeficiency virus gp120 binding site on CD4: delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high-resolution CD4 atomic structure. J. Exp. Med. 176, 507–517.

    Article  PubMed  CAS  Google Scholar 

  35. Drakopoulou, E., Vizzavona, J., Neyton, J., Aniort, V., Bouet, F., Virelizier, H., et al. (1998) Consequence of the removal of evolutionary conserved disulfide bridges on the structure and function of charybdotoxin and evidence that particular cysteine spacings govern specific disulfide bond formation. Biochemistry 37, 1292–1301.

    Article  PubMed  CAS  Google Scholar 

  36. Vita, C., Drakopoulou, E., Vizzavona, J., Rochette, S., Martin, L., Menez, A., et al. (1999) Rational engineering of a mini-protein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA 96, 13091–13096.

    Article  PubMed  CAS  Google Scholar 

  37. Martin, L., Stricher, F., Misse, D., Sironi, F., Pugniere, M., Barthe, P., et al. (2003) Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes. Nat. Biotechnol. 21, 71–76.

    Article  PubMed  CAS  Google Scholar 

  38. Myszka, D. G., Sweet, R. W., Hensley, P., Brigham-Burke, M., Kwong, P. D., Hendrickson, W. A., et al. (2000) Energetics of the HIV gp120-CD4 binding reaction. Proc. Natl. Acad. Sci. USA 97, 9026–9031.

    Article  PubMed  CAS  Google Scholar 

  39. Stricher, F., Martin, L., Barthe, P., Pogenberg, V., Mechulam, A., Menez, A., et al. (2005) A high-throughput fluorescence polarization assay specific to the CD4 binding site of HIV-1 glycoproteins based on a fluorescein-labeled CD4 mimic. Biochem. J. 390, 29–39.

    Article  PubMed  CAS  Google Scholar 

  40. Huang, C. C., Stricher, F., Martin, L., Decker, J. M., Majeed, S., Barthe, P., et al. (2005) Scorpion-toxin mimics of CD4 in complex with human immunodeficiency virus gp120 crystal structures, molecular mimicry, and neutralization breadth. Structure 13, 755–768.

    Article  PubMed  CAS  Google Scholar 

  41. Sundberg, E. J., Urrutia, M., Braden, B. C., Isern, J., Tsuchiya, D., Fields, B. A., et al. (2000) Estimation of the hydrophobic effect in an antigen-antibody proteinprotein interface. Biochemistry 39, 15375–15387.

    Article  PubMed  CAS  Google Scholar 

  42. Richards, F. M. and Kundrot, C. E. (1988) Identification of structural motifs from protein coordinate data: secondary structure and first-level supersecondary structure. Proteins 3, 71–84.

    Article  PubMed  CAS  Google Scholar 

  43. Bruix, M., Jimenez, M. A., Santoro, J., Gonzalez, C., Colilla, F. J., Mendez, E., et al. (1993) Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins. Biochemistry 32, 715–724.

    Article  PubMed  CAS  Google Scholar 

  44. Yang, Y. S., Mitta, G., Chavanieu, A., Calas, B., Sanchez, J. F., Roch, P., et al. (2000) Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1). Biochemistry 39, 14436–14447.

    Article  PubMed  CAS  Google Scholar 

  45. Caldwell, J. E., Abildgaard, F., Dzakula, Z., Ming, D., Hellekant, G., and Markley, J. L. (1998) Solution structure of the thermostable sweet-tasting protein brazzein. Nat. Struct. Biol. 5, 427–431.

    Article  PubMed  CAS  Google Scholar 

  46. Ceciliani, F., Bortolotti, F., Menegatti, E., Ronchi, S., Ascenzi, P., and Palmieri, S. (1994) Purification, inhibitory properties, amino acid sequence and identification of the reactive site of a new serine proteinase inhibitor from oil-rape (Brassica napus) seed. FEBS Lett. 342, 221–224.

    Article  PubMed  CAS  Google Scholar 

  47. Zhu, Q., Liang, S., Martin, L., Gasparini, S., Menez, A., and Vita, C. (2002) Role of disulfide bonds in folding and activity of leiurotoxin I: just two disulfides suffice. Biochemistry 41, 11488–11494.

    Article  PubMed  CAS  Google Scholar 

  48. Buisine, E., Wieruszeski, J. M., Lippens, G., Wouters, D., Tartar, A., and Sautiere, P. (1997) Characterization of a new family of toxin-like peptides from the venom of the scorpion Leiurus quinquestriatus hebraeus. 1H-NMR structure of leiuropeptide II. J. Pept. Res. 49, 545–555.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Stricher, F., Martin, L., Vita, C. (2006). Design of Miniproteins by the Transfer of Active Sites Onto Small-Size Scaffolds. In: Guerois, R., de la Paz, M.L. (eds) Protein Design. Methods in Molecular Biology, vol 340. Humana Press. https://doi.org/10.1385/1-59745-116-9:113

Download citation

  • DOI: https://doi.org/10.1385/1-59745-116-9:113

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-585-9

  • Online ISBN: 978-1-59745-116-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics