Skip to main content

Isolation and Analysis of Lipid Rafts in Cell–Cell Interactions

  • Protocol
  • 3033 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 341))

Abstract

Lipid rafts are dynamic structures made up of proteins and lipids that float freely within the liquid-disordered bilayer of cellular membranes and have the ability to cluster to form larger, more-ordered platforms. These clustered structures have been identified in all cell types and have been shown to play critical roles in signal transduction, cellular transport, and Cell-Cell communication. Lipid rafts also have been implicated in facilitating bacterial/viral entry into host cells and in human disease, highlighting the significance of understanding the role lipid rafts play in physiological and pathological signaling outcomes. In this chapter, we provide protocols to isolate lipid rafts from polarized and nonpolarized cells and outline novel technologies to analyze signal transduction cascades in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Horejsi, V. (2005) Lipid rafts and their roles in T-cell activation. Microbes Infect. 7, 310–316.

    Article  CAS  PubMed  Google Scholar 

  2. Mayor, S. and Rao, M. (2004) Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5, 231–240.

    Article  CAS  PubMed  Google Scholar 

  3. Mukherjee, S. and Maxfield, F. R. (2004) Membrane domains. Annu. Rev. Cell Dev. Biol. 20, 839–66.

    Article  CAS  PubMed  Google Scholar 

  4. Rajendran, L. and Simons, K. (2005) Lipid rafts and membrane dynamics. J. Cell Sci. 118, 1099–1102.

    Article  CAS  PubMed  Google Scholar 

  5. Demetriou, M., Granovsky, M., Quaggin, S., and Dennis, J. W. (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739.

    Article  CAS  PubMed  Google Scholar 

  6. Sillence, D. J. (2001) Apoptosis and signalling in acid sphingomyelinase deficient cells. BMC Cell Biol. 2, 24.

    Article  CAS  PubMed  Google Scholar 

  7. Watzke, A., Brunsveld, L., Durek, T., et al. (2005) Chemical biology of protein lipidation: semi-synthesis and structure elucidation of prenylated RabGTPases. Org. Biomol. Chem. 7, 1157–1164.

    Article  Google Scholar 

  8. van’t Hof, W. and Resh, M.D. (1999) Dual Fatty Acylation of p59Fyn is required for association with the T-cell receptor z chain through phosphotyrosine-Src homology domain-2 interactions. J. Cell Biol. 145, 277–389.

    Google Scholar 

  9. Harder, T. and Khun, M. (2001) Immunoisolation of TCR signaling complexes from Jurkat T leukemic cells. SciSTKE 71, pI1–pI18.

    Google Scholar 

  10. Thomas, S., Preda-Pais, A., Casares, S., and Brumeanu, T. D. (2004) Analysis of lipid rafts in T-cells. Mol. Immunol. 41, 399–409.

    Article  CAS  PubMed  Google Scholar 

  11. Parton, R. G. and Hancock, J. F. (2004) Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol. 14, 141–147.

    Article  CAS  PubMed  Google Scholar 

  12. Paladino, S., Sarnataro, D., Pillich, R., Tivodar, S., Nitsch, L., and Zurzolo, C. (2004) Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J. Cell Biol. 167, 699–709.

    Article  CAS  PubMed  Google Scholar 

  13. Harder, T. and Kuhn, M. (2000) Selective accumulation of raft-associated membrane protein LAT in T-cell receptor signaling assemblies. J. Cell Biol. 151, 199–207.

    Article  CAS  PubMed  Google Scholar 

  14. Simons, K. and Vaz, W. L. (2004) Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295.

    Article  CAS  PubMed  Google Scholar 

  15. Lafont, F., Abrami, L., and van der Goot, F. G. (2004) Bacterial subversion of lipid rafts. Curr. Opin. Microbiol. 7, 4–10.

    Article  CAS  PubMed  Google Scholar 

  16. Harder, T. (2004) Lipid raft domains and protein networks in T-cell receptor signal transduction. Curr. Opin. Immunol. 16, 353–359.

    Article  CAS  PubMed  Google Scholar 

  17. Golub, T., Wacha, S., and Caroni, P. (2004) Spatial and temporal control of signaling through lipid rafts. Curr. Opin. Neurobiol. 14, 542–550.

    Article  CAS  PubMed  Google Scholar 

  18. Krishnan, S., Nambiar, M. P., Warke, V. G., et al. (2004) Alterations in lipid raft composition and dynamics contribute to abnormal T-cell responses in systemic lupus erythematosus. J. Immunol. 172, 7821–7831.

    CAS  PubMed  Google Scholar 

  19. Aridor, M. and Hanna, L. A. (2000) Traffic jam: a compendium of human diseases that affect intracellular transport processes. Traffic 1, 836–851.

    Article  CAS  PubMed  Google Scholar 

  20. Pagano, R. E., Puri, V., Dominguez, M., and Marks, D. L. (2000) Membrane traffic in sphingolipid storage diseases. Traffic 1, 807–815.

    Article  CAS  PubMed  Google Scholar 

  21. Simons, K. and Ehehalt, R. (2002) Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110, 597–603.

    CAS  PubMed  Google Scholar 

  22. Henderson, R. M., Edwardson, J. M., Geisse, N. A., and Saslowsky, D. E. (2004) Lipid rafts: feeling is believing. News Physiol. Sci. 19, 39–43.

    CAS  PubMed  Google Scholar 

  23. Horejsi, V. (2003) The roles of membrane microdomains (rafts) in T-cell activation. Immunol. Rev. 191, 148–164.

    Article  CAS  PubMed  Google Scholar 

  24. Burack, W. R., Lee, K. H., Holdorf, A. D., Dustin, M. L., and Shaw, A. S. (2002) Cutting edge: quantitative imaging of raft accumulation in the immunological synapse. J. Immunol. 169, 2837–2841.

    CAS  PubMed  Google Scholar 

  25. Maine, G. N. and Mule, J. J. (2002) Making room for T-cells. J. Clin. Invest. 110, 157–159.

    CAS  PubMed  Google Scholar 

  26. He, H. T., Lellouch, A., and Didier, M. (2005) Lipid rafts and the initiation of T-cell receptor signaling. Semin. Immunol. 17, 23–33.

    Article  CAS  PubMed  Google Scholar 

  27. Drevot, P., Langlet, C., Guo, X. J., et al. (2002) TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21, 1899–1908.

    Article  CAS  PubMed  Google Scholar 

  28. Macdonald, J. L. and Pike, L. J. (2005) A simplified method for the preparation of detergent-free lipid rafts. J. Lipid Res. 46, 1061–1067.

    Article  CAS  PubMed  Google Scholar 

  29. Pike, L. J. (2004) Lipid rafts: heterogeneity on the high seas. Biochem. J. 378, 281–292.

    Article  CAS  PubMed  Google Scholar 

  30. Smart, E. J., Ying, Y. S., Mineo, C., and Anderson, R. G. W. (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. USA 92, 10,104–10,108.

    Article  CAS  PubMed  Google Scholar 

  31. Song, K. S., Li, S., Okamoto, T., Quilliam, L. A., Sargiacomo, M., and Lisanti, M. P. (1996) Co-purification and direct interaction of Ras with Caveolin, an integral membrane protein of caveolae microdomains. J. Biol. Chem. 271, 9690–9697.

    Article  CAS  PubMed  Google Scholar 

  32. Du, G., Altshuller, Y. M., Vitale, N., et al. (2003) Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J. Cell Biol. 162, 305–315.

    Article  CAS  PubMed  Google Scholar 

  33. Stauffer, T. P. and Meyer, T. (1997) Compartmentalized IgE receptor-mediated signal transduction in living cells. J. Cell Biol. 139, 1447–1454.

    Article  CAS  PubMed  Google Scholar 

  34. Zacharias, D. A., Violin, J. D., Newton, A. C., and Tsien, R. Y. (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916.

    Article  CAS  PubMed  Google Scholar 

  35. van Meer, G. (2002) The different hues of lipid rafts. Science 296, 855–856.

    Article  PubMed  Google Scholar 

  36. Chen, C. S., Martin, O. C., and Pagano, R. E. (1997) Changes in the spectral properties of a plasma membrane lipid analog during the first seconds of endocytosis in living cells. Biophys. J. 72, 37–50.

    Article  CAS  PubMed  Google Scholar 

  37. Jacobson, K. and Dietrich, C. (1999) Looking at lipid rafts? Trends Cell Biol. 9, 87–91.

    Article  CAS  PubMed  Google Scholar 

  38. Kuerschner, L., Ejsing, C. S., Ekroos, K., Shevchenko, A., Anderson, K. I., and Thiele, C. (2005) Polyene-lipids: a new tool to image lipids. Nat. Methods 2, 39–45.

    Article  CAS  PubMed  Google Scholar 

  39. van Meer, G. and Liskamp, R. M. J. (2005) Brilliant lipids. Nat. Methods 2, 14–15.

    Article  PubMed  Google Scholar 

  40. Prior, I. A., Parton, R. G., and Hancock, J. F. (2003) Observing cell surface signaling domains using electron microscopy. SciSTKE 177, pI9–pI23.

    Google Scholar 

  41. Prior, I. A., Muncke, C., Parton, R. G., and Hancock, J. F. (2003) Direct visualization of Ras proteins in spatially distinct cell surface domains. J. Cell Biol. 160, 165–170.

    Article  CAS  PubMed  Google Scholar 

  42. Glebov, O. O. and Nichols, B. J. (2004) Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat. Cell Biol. 6, 238–243.

    Article  CAS  PubMed  Google Scholar 

  43. Kenworthy, A. K. and Edidin, M. (1998) Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84.

    Article  CAS  PubMed  Google Scholar 

  44. Pierce, S. K. (2004) To cluster or not to cluster: FRETting over rafts. Nat. Cell Biol. 6, 180–181.

    Article  CAS  PubMed  Google Scholar 

  45. Gordon, G. W., Berry, G., Liang, X. H., Levine, B., and Herman, B. (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophysical J. 74, 2702–2713.

    Article  CAS  Google Scholar 

  46. Tanimura, N., Nagafuku, M., Liddicoat, D. R., Hamaoka, T., and Kosugi, A. (2003) Analysis of the mobility of signaling molecules in lymphocytes using fluorescence photobleaching techniques. SciSTKE 185, pI10–pI18.

    Google Scholar 

  47. Herman, B., Krishnan, R. V., and Centonze, V. E. (2004) Microscopic analysis of fluorescence resonance energy transfer (FRET), in Protein–Protein Interactions: Methods and Applications (Fu H., ed.), Vol. 261, Humana Press Totowa, NJ, pp. 351–370.

    Chapter  Google Scholar 

  48. von Haller, P. D., Donohoe, S., Goodlett, D. R., Aebersold, R., and Watts, J. D. (2001) Mass spectrometric characterization of proteins extracted from Jurkat T-cell detergent-resistant membrane domains. Proteomics 1, 1010–1021.

    Article  Google Scholar 

  49. Pompach, P., Man, P., Novak, P., Havlicek, V., Fiserova, A., and Bezouska, K. (2004) Mass spectrometry is a powerful tool for identification of proteins associated with lipid rafts of Jurkat T-cell line. Biochem. Soc. Trans. 32, 777–779.

    Article  CAS  PubMed  Google Scholar 

  50. Tu, X., Huang, A., Bae, D., et al. (2004) Proteome analysis of lipid rafts in Jurkat cells characterizes a raft subset that is involved in NF-kappaB activation. J. Proteome Res. 3, 445–454.

    Article  CAS  PubMed  Google Scholar 

  51. Foster, L. J., de Hoog, C. L., and Mann, M. (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl. Acad. Sci. USA 100, 5813–5818.

    Article  CAS  PubMed  Google Scholar 

  52. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., et al. (2002) Stable isotopic labeling by amino acids in cell culture, silac, as a simple and accurate approach to expression proteomics. Mol. Cell Proteom. 1, 373–386.

    Article  Google Scholar 

  53. Gombos, I., Basco, Z., Detre, C., Nagy, H., Goda, K., Andrasfalvy, M., et al. (2004) Cholesterol sensitivity of detergent resistance: a rapid flow cytometric test for detecting constitutive or induced raft association of membrane proteins. Cytometry 61A, 117–126.

    Article  CAS  Google Scholar 

  54. Kwik, J., Boyle, S., Fooksman, D., Margolis, L., Sheetz, M. P., and Edidin, M. (2003) Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4, 5-bisphosphate-dependent organization of cell actin. Proc. Natl. Acad. Sci. USA 100, 13,964–13,969.

    Article  CAS  PubMed  Google Scholar 

  55. Razzaq, T. M., Ozegbe, P., Jury, E. C., Sembi, P., Blackwell, N. M., and Kabourids, P. S. (2004) Regulation of T-cell receptor signalling by membrane microdomains. Immunology 113, 413–426.

    Article  CAS  PubMed  Google Scholar 

  56. Sprague, B. L. and McNally, J. G. (2004) FRAP analysis of binding: proper and fitting. Trends Cell Biol. 15, 84–91.

    Article  Google Scholar 

  57. Vacchio, M. S. and Shores, E. W. (2000) Flow cytometric analysis of murine T lymphocytes, in T Cell Protocols (Kearse K., ed.), Vol. 134, Humana Press Totowa, NJ, pp. 153–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Landry, A., Xavier, R. (2006). Isolation and Analysis of Lipid Rafts in Cell–Cell Interactions. In: Colgan, S.P. (eds) Cell-Cell Interactions. Methods in Molecular Biology™, vol 341. Humana Press. https://doi.org/10.1385/1-59745-113-4:251

Download citation

  • DOI: https://doi.org/10.1385/1-59745-113-4:251

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-523-1

  • Online ISBN: 978-1-59745-113-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics