Blood-Brain Barrier and Cell-Cell Interactions: Methods for Establishing In Vitro Models of the Blood-Brain Barrier and Transport Measurements

  • Michael Aschner
  • Vanessa A. Fitsanakis
  • Ana Paula Marreilha dos Santos
  • Luisa Olivi
  • Joseph P. Bressler
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 341)

Abstract

This chapter describes in vitro methods for studying the Blood-Brain barrier. These methods include a cell line and isolated brain microvessels. The rat brain endothelial cell line 4 (RBE4) express many properties that are expressed by brain endothelial cells in vivo. Tissue culture methods allow the investigator to design experiments for studying transporters and permeability that would be much more difficult in vivo. A method for making preparations of isolated brain microvessels also is described. These preparations are highly enriched and also can be used for studying transport in vitro, but their short life span is a limitation. Two methods are discussed for measuring transport in cell culture. In one method, permeability is measured across a cell monolayer. This method is useful for measuring luminal and abluminal transport. The second method is especially designed for measuring the families of efflux transporters. These in vitro methods will complement many of the in vivo techniques, and they may be used as screening for more timely and expensive experiments, and also reducing the need for experimental animals.

Key Words

Blood-Brain barrier RBE4 cells brain microvessels transporters permeability multidrug resistance 

References

  1. 1.
    Reese, T. S. and Karnovsky, M. J. (1967) Fine structural localization of a blood–brain barrier to exogenous peroxidase. J. Cell Biol. 34, 207–217.CrossRefPubMedGoogle Scholar
  2. 2.
    Brightman, M. and Reese, T. (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40, 648–677.CrossRefPubMedGoogle Scholar
  3. 3.
    Vannucci, S. J., Maher, F., and Simpson, I. A. (1997) Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21, 2–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Bradbury, M. W. (1985) The Blood-Brain barrier. Transport across the cerebral endothelium. Circ. Res. 57, 213–222.PubMedGoogle Scholar
  5. 5.
    de Boer, A. G., van der Sandt I. C., and Gaillard, P. J. (2003) The role of drug transporters at the blood-brain barrier. Annu. Rev. Pharmacol. Toxicol. 43, 629–656.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang, Y., Schuetz, J. D., Elmquist, W. F., and Miller, D. W. (2004) Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J. Pharmacol. Exp. Ther. 311, 449–455.CrossRefPubMedGoogle Scholar
  7. 7.
    Seetharaman, S., Barrand, M. A., Maskell, L., and Scheper, R. J. (1998) Multidrug resistance-related transport proteins in isolated human brain microvessels and in cells cultured from these isolates. J. Neurochem. 70, 1151–1159.CrossRefPubMedGoogle Scholar
  8. 8.
    Regina, A., Koman, A., Piciotti, M., et al. (1998) Mrp1 multidrug resistanceassociated protein and P-glycoprotein expression in rat brain microvessel endothelial cells. J. Neurochem. 71, 705–715.CrossRefPubMedGoogle Scholar
  9. 9.
    Doyle, L. A. and Ross, D. D. (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22, 7340–7358.CrossRefPubMedGoogle Scholar
  10. 10.
    Suzuki, H. and Sugiyama, Y. (2000) Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestine. Eur. J. Pharm. Sci. 12, 3–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Borst, P., Evers, R., Kool, M., and Wijnholds J. (1999) The multidrug resistance protein family. Biochim. Biophys. Acta 1461, 347–357.CrossRefPubMedGoogle Scholar
  12. 12.
    Wolburg, H., Neuhaus, J., Kniesel, U., et al. (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 107, 1347–1357.PubMedGoogle Scholar
  13. 13.
    Wolburg, H., Neuhaus, J., Kniesel, U., et al. (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 107, 1347–1357.PubMedGoogle Scholar
  14. 14.
    Gaillard, P. J., Voorwinden, L. H., Nielsen, J. L., et al. (2001) Establishment and functional characterization of an in vitro model of the Blood-Brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur. J. Pharm. Sci. 12, 215–222.CrossRefPubMedGoogle Scholar
  15. 15.
    Parran, D. K., Magnin, G., Li, W., Jortner, B. S., and Ehrich, M. (2005) Chlorpyrifos alters functional integrity and structure of an in vitro BBB model: co-cultures of bovine endothelial cells and neonatal rat astrocytes. Neurotoxicology 26, 77–88.CrossRefPubMedGoogle Scholar
  16. 16.
    Roux, F., Durieu-Trautmann, O., Chaverot, N., et al. (1994) Regulation of gammaglutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J. Cell Physiol. 159, 101–113.CrossRefPubMedGoogle Scholar
  17. 17.
    Durieu-Trautmann, O., Bourdoulous, S., Roux, F., Bourre, J. M., Strosberg, A. D., and Couraud, P. O. (1993) Immortalized rat brain microvessel endothelial cells: II–Pharmacological characterization. Adv. Exp. Med. Biol. 331, 205–210.PubMedGoogle Scholar
  18. 18.
    Roux, F., Durieu-Trautmann, O., Bourre, J. M., Strosberg, A. D., and Couraud P. O. (1993) Immortalized rat brain microvessel endothelial cells: I–Expression of blood-brain barrier markers during angiogenesis. Adv. Exp. Med. Biol. 331, 201–204.PubMedGoogle Scholar
  19. 19.
    Begley, D. J., Lechardeur, D., Chen, Z. D., et al. (1996) Functional expression of P-glycoprotein in an immortalised cell line of rat brain endothelial cells, RBE4. J. Neurochem. 67, 988–995.CrossRefPubMedGoogle Scholar
  20. 20.
    Brust, P., Friedrich, A., Krizbai, I. A., et al. (2000) Functional expression of the serotonin transporter in immortalized rat brain microvessel endothelial cells. J. Neurochem. 74, 1241–1248.CrossRefPubMedGoogle Scholar
  21. 21.
    Sampaio-Maia, B., Serrao, M. P., and Soares-da-Silva, P. (2001) Regulatory pathways and uptake of L-DOPA by capillary cerebral endothelial cells, astrocytes, and neuronal cells. Am. J. Physiol. 280, C333–C342.Google Scholar
  22. 22.
    Friedrich, A., Prasad, P. D., Freyer, D., Ganapathy, V., and Brust, P. (2003) Molecular cloning and functional characterization of the OCTN2 transporter at the RBE4 cells, an in vitro model of the blood-brain barrier. Brain Res. 968, 69–79.CrossRefPubMedGoogle Scholar
  23. 23.
    Regina, A., Roux, F., and Revest, P. A. (1997) Glucose transport in immortalized rat brain capillary endothelial cells in vitro: transport activity and GLUT1 expression. Biochim. Biophys. Acta 1335, 135–143.PubMedGoogle Scholar
  24. 24.
    el Hafny, B., Bourre, J. M., and Roux, F. (1996) Synergistic stimulation of gammaglutamyl transpeptidase and alkaline phosphatase activities by retinoic acid and astroglial factors in immortalized rat brain microvessel endothelial cells. J. Cell Physiol. 167, 451–460.CrossRefPubMedGoogle Scholar
  25. 25.
    Yang, J., Mutkus, L. A., Sumner, D., et al. (2001) Transendothelial permeability of chlorpyrifos in RBE4 monolayers is modulated by astrocyte-conditioned medium. Brain Res. Mol. Brain Res. 97, 43–50.CrossRefPubMedGoogle Scholar
  26. 26.
    Pachot, J. I., Botham, R. P., Haegele, K. D., and Hwang, K. (2003) Experimental estimation of the role of P-Glycoprotein in the pharmacokinetic behaviour of telithromycin, a novel ketolide, in comparison with roxithromycin and other macrolides using the Caco-2 cell model. J. Pharm. Pharm. Sci. 6, 1–12.PubMedGoogle Scholar
  27. 27.
    Brown, R. C., Mark, K. S., Egleton, R. D., and Davis, T. P. (2004) Protection against hypoxia-induced blood-brain barrier disruption: changes in intracellular calcium. Am. J. Physiol. Cell Physiol. 286, C1045–C1052.CrossRefPubMedGoogle Scholar
  28. 28.
    Ambudkar, S. V. (1998) Drug-stimulatable ATPase activity in crude membranes of human MDR1-transfected mammalian cells. Methods Enzymol. 292, 504–514.CrossRefPubMedGoogle Scholar
  29. 29.
    Senior, A. E., al-Shawi, M. K., and Urbatsch, I. L. (1998) ATPase activity of Chinese hamster P-glycoprotein. Methods Enzymol. 292, 514–523.CrossRefPubMedGoogle Scholar
  30. 30.
    Robey, R. W., Honjo, Y., van de Laar, A., et al. (2001) A functional assay for detection of the mitoxantrone resistance protein, MXR (ABCG2) Biochim. Biophys. Acta 1512, 171–182.CrossRefPubMedGoogle Scholar
  31. 31.
    Robey, R. W., Steadman, K., Polgar, O., et al. (2004) Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Res. 64, 1242–1246.CrossRefPubMedGoogle Scholar
  32. 32.
    Lee, Y. J., Kusuhara, H., Jonker, J. W., Schinkel, A. H., and Sugiyama, Y. (2005) Investigation of efflux transport of dehydroepiandrosterone sulfate and mitoxantrone at the mouse blood-brain barrier: a minor role of breast cancer resistance protein. J. Pharmacol. Exp. Ther. 312, 44–52.CrossRefPubMedGoogle Scholar
  33. 33.
    Shapiro, A. B., Fox, K., Lam, P., and Ling V. (1999) Stimulation of P-glycoproteinmediated drug transport by prazosin and progesterone. Evidence for a third drugbinding site. Eur. J. Biochem. 259, 841–850.CrossRefPubMedGoogle Scholar
  34. 34.
    Daoud, R., Kast, C., Gros, P., and Georges E. (2000) Rhodamine 123 binds to multiple sites in the multidrug resistance protein (MRP1) Biochemistry 39, 15,344–15,352.CrossRefPubMedGoogle Scholar
  35. 35.
    Robey, R. W., Honjo, Y., Morisaki, K., Nadjem, T. A., Runge, S., Risbood, M., et al. (2003) Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br. J. Cancer 89, 1971–1978.CrossRefPubMedGoogle Scholar
  36. 36.
    Cornwell, M. M., Safa, A. R., Felsted, R. L., Gottesman, M. M., and Pastan, I. (1986) Membrane vesicles from multidrug-resistant human cancer cells contain a specific 150-to 170-kDa protein detected by photoaffinity labeling. Proc. Natl. Acad. Sci. USA 83, 3847–3850.CrossRefPubMedGoogle Scholar
  37. 37.
    Rabindran, S. K., He, H., Singh, M., Brown, E., Collins, K. I., Annable, T., and Greenberger, L. M. (1998) Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res. 58, 5850–5858.PubMedGoogle Scholar
  38. 38.
    Jodoin, J., Demeule, M., Fenart, L., Cecchelli, R., Farmer, S., Linton, K. J., et al. (2003) P-glycoprotein in blood-brain barrier endothelial cells: interaction and oligomerization with caveolins. J. Neurochem. 87, 1010–1023.CrossRefPubMedGoogle Scholar
  39. 39.
    Algers, G., Karlsson, B., and Sellstrom, A. (1986) On the composition and characteristics of microvessels isolated from the rabbit and bovine brain. Neurochem. Res. 11, 661–670.CrossRefPubMedGoogle Scholar
  40. 40.
    Wolff, J. E. A., Belloni-Olivi, L., Bressler, J. P., and Goldstein, G. W. (1992) Gamma-glutamyl transpeptidase activity in brain microvessels exhibits regional heterogeneity. J. Neurochem. 58, 909–915.CrossRefPubMedGoogle Scholar
  41. 41.
    Lasbennes, F. and Gayet, J. (1984) Capacity for energy metabolism in microvessels isolated from rat brain. Neurochem. Res. 9, 1–10.CrossRefPubMedGoogle Scholar
  42. 42.
    Betz, A. L. and Goldstein, G. W. (1986) Specialized properties and solute transport in brain capillaries. Annu. Rev. Physiol. 48, 241–250.CrossRefPubMedGoogle Scholar
  43. 43.
    Miller, D. S., Nobmann, S. N., Gutmann, H., Toeroek, M., Drewe, J., and Fricker, G. (2000) Xenobiotic transport across isolated brain microvessels studied by confocal microscopy. Mol. Pharmacol. 58, 1357–1367.PubMedGoogle Scholar
  44. 44.
    Goldstein, G. W., Wolinsky, J. S., Csejtey, J., and Diamond, I. (1975) Isolation of metabolically active capillaries from rat brain. J. Neurochem. 25, 715–717.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Michael Aschner
    • 1
  • Vanessa A. Fitsanakis
    • 2
  • Ana Paula Marreilha dos Santos
    • 3
  • Luisa Olivi
    • 4
  • Joseph P. Bressler
    • 5
  1. 1.Department of Pediatrics Pharmacology and The Kennedy CenterVanderbilt University School of MedicineNashville
  2. 2.Department of PediatricsVanderbilt University Medical CenterNashville
  3. 3.University of LisbonLisbonPortugal
  4. 4.The Kennedy Krieger InstituteJohn Hopkins University Bloomberg School of Public HealthBaltimore
  5. 5.Department of Environmental Health Sciences, The Kennedy Krieger InstituteJohn Hopkins University Bloomberg School of Public HealthBaltimore

Personalised recommendations