Skip to main content

Probing the Effects of Phosphoinositides on Ion Channels

  • Protocol
Ion Channels

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 337))

Abstract

Ion channels are integral membrane proteins that control transmembrane ion fluxes to regulate membrane potential, cell excitability, and ion transport. Membrane phospho-lipids containing phosphoinositides have recently emerged as important regulators of many ion channels, including inward rectifier K + channel, voltage-gated K + and Ca 2+ channels, transient receptor potential channels, and intracellular inositol-1,4,5-trisphos-phate receptor ion channels. Discussed here are several methods for studying regulation of ion channels by phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hilgemann, D. W., Feng, S., and Nasuhoglu, C. (2001) The complex and intrigu-ing lives of PIP2 with ion channels and transporters. Sci. STKE. RE19–25.

    Google Scholar 

  2. Overduin, M., Cheever, M. L., and Kutateladze, T. G. (2001) Signaling with phosphoinositides: better than binary. Mol. Interventions 1, 150–159.

    CAS  Google Scholar 

  3. Stephens, L. R., Jackson, T. R., and Hawkins, P. T. (1993) Agonist-stimulated synthesis of phosphatidylinositol (3,4,5)-trisphosphate: a new intracellular sig-nalling system. Biochim. et Biophys. Acta 1179, 27–75.

    Article  CAS  Google Scholar 

  4. McLaughlin, S., Wang, J., Gambhir, A., and Murray, D (2002) PIP2 and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175.

    Article  PubMed  CAS  Google Scholar 

  5. Huang, C.-L., Feng, S., and Hilgemann, D. W. (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbg. Nature 391, 803–806.

    Article  PubMed  CAS  Google Scholar 

  6. Liou, H.-H., Zhou, S. S., and Huang, C.-L. (1999) Phosphorylation of ROMK1 channel by PKA regulates channel activity via a PIP2-dependent mechanism. Proc. Natl. Acad. Sci. USA 96, 5820–5825.

    Article  PubMed  CAS  Google Scholar 

  7. Rudy, B. and Iverson, L. E. (1993) Methods in Enzymology, Vol. 207, Ion Channels, Academic, San Diego.

    Google Scholar 

  8. Zeng, W.-Z., Liou, H.-H., Krishna, U. M., Falck, J. R., and Huang, C.-L. (2002) Structural determinants and specificities for ROMK1-phosphoinositide interac-tion. Am. J. Physiol. 282, F826–F834.

    CAS  Google Scholar 

  9. Baukrowitz, T., Schulte, U., Oliver, D., et al. (1998). PIP2 and PIP as determi-nants for ATP inhibition of KATP channels. Science 282, 1141–1144.

    Article  PubMed  CAS  Google Scholar 

  10. Dickenson, J. M. and Hill, S. J. (1997). Transfected adenosine A1 receptor-mediated modulation of thrombin-stimulated phospholipase C and phospholipase A2 activity in CHO cells. Eur. J. Pharmacol. 321, 77–86.

    Article  PubMed  CAS  Google Scholar 

  11. Suh, B.-C. and Hille, B. (2002) Recovery from muscarinic modulation of M cur-rent channel requires phosphatidylinositol 4,5-bisphosphate. Neuron 35, 507–520.

    Article  PubMed  CAS  Google Scholar 

  12. Rohacs, T., Chen, J., Prestwich, G. D., and Logothetis, D. E. (1999) Distinct speci-ficities of inwardly rectifying K + channels for phosphoinositides. J. Biol. Chem. 274, 36,065–36,072.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, H., He, C., Yan, X., Mirshahi, T., and Logothetis, D. E. (1999) Activation of inwardly rectifying K + channels by distinct PtdIns(4,5)P2 interactions. Nat. Cell Biol. 1, 183–188.

    Article  PubMed  CAS  Google Scholar 

  14. Hilgemann, D. W. and Ball, R. (1996) Regulation of cardiac Na+, Ca 2+ exchanges and KATP potassium channels by PIP2. Science 273, 956–959.

    Article  PubMed  CAS  Google Scholar 

  15. Ozaki, S., DeWald, D. B., Shope, J. C., Chen, J., and Prestwich, G. D. (2000) Intracellular delivery of phosphoinositides and inositol phosphates using polyamine carriers. Proc. Natl. Acad. Sci. USA 97, 11,286–11,291.

    Article  PubMed  CAS  Google Scholar 

  16. Nakanishi, S., Catt, K. J., and Balla, T. (1995) A wortmannin-sensitive phos-phatidylinositol 4-kinase that regulates hormone-sensitive pools of inositol-phospholipids. Proc. Natl. Acad. Sci. USA 92, 5317–5321.

    Article  PubMed  CAS  Google Scholar 

  17. Bezzerides, V. J., Ramsey, I. S., Kotecha, S., Greka, A., and Clapham, D. E. (2004) Rapid vesicular translocation and insertion of TRP channels. Nat. Cell Biol. 6, 709–720.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Huang, CL. (2006). Probing the Effects of Phosphoinositides on Ion Channels. In: Stockand, J.D., Shapiro, M.S. (eds) Ion Channels. Methods in Molecular Biology™, vol 337. Humana Press. https://doi.org/10.1385/1-59745-095-2:81

Download citation

  • DOI: https://doi.org/10.1385/1-59745-095-2:81

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-576-7

  • Online ISBN: 978-1-59745-095-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics