Skip to main content

Exogenous Expression of Proteins in Neurons Using the Biolistic Particle Delivery System

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 337))

Abstract

Exogenous expression of genes in mammalian neurons represents a substantial experimental challenge because of the low efficiency of commercially available liposomal transfection reagents for nondividing cells and considerable toxicity of viral transfection systems. In this chapter, we discuss application of the ℌbiolisticℍ; particle delivery system for heterologous expression of genes in primary neuron cultures. The method is based on the direct introduction of cDNA of interest into the nucleus by penetration with DNA-coated gold particles. With this approach, cDNA expression is independent of cell cycling and proliferation and is similar to intranuclear microinjection, with both avoiding cDNA delivery through the cytosol. Examples of successful transfection using PDS of rat superior cervical ganglion and trigeminal ganglion neurons are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hille, B., Beech, D. J., Bernheim, L., Mathie, A., Shapiro, M. S., and Wollmuth, L. P. (1995) Multiple G-protein-coupled pathways inhibit N-type Ca2+ channels of neurons. Life Sci. 56, 989–992.

    Article  PubMed  CAS  Google Scholar 

  2. Gamper, N. and Shapiro, M. S. (2003) Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels. J. Gen. Physiol. 122, 17–31.

    Article  PubMed  CAS  Google Scholar 

  3. Gamper, N., Stockand, J. D., and Shapiro, M. S. (2003) Subunit-specific modulation of KCNQ potassium channels by Src tyrosine kinase. J. Neurosci. 23, 84–95.

    PubMed  CAS  Google Scholar 

  4. Gamper, N., Reznikov, V., Yamada, Y., Yang, J., and Shapiro, M. S. (2004) Phosphatidylinositol 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. J. Neurosci. 24, 10,980–10,992.

    Article  PubMed  CAS  Google Scholar 

  5. Patwardhan, A., Berg, K. A., Akopain, A. N., et al. (2005) Bradykinin-induced functional competence and trafficking of the delta opioid receptor in trigeminal nociceptors. J. Neurosci. 25, 8825–8832.

    Article  PubMed  CAS  Google Scholar 

  6. Malin, S. A. and Nerbonne, J. M. (2000) Elimination of the fast transient in superior cervical ganglion neurons with expression of KV4.2W362F: molecular dissection of IA. J. Neurosci. 20, 5191–5199.

    PubMed  CAS  Google Scholar 

  7. Malin, S. A. and Nerbonne, J. M. (2001) Molecular heterogeneity of the voltagegated fast transient outward K+ current, I(Af), in mammalian neurons. J. Neurosci. 21, 8004–8014.

    PubMed  CAS  Google Scholar 

  8. Bernheim, L., Beech, D. J., and Hille, B. (1991) A diffusible second messenger mediates one of the pathways coupling receptors to calcium channels in rat sympathetic neurons. Neuron 6, 859–867.

    Article  PubMed  CAS  Google Scholar 

  9. Price, T. J., Patwardhan, A., Akopian, A. N., Hargreaves, K. M., and Flores, C. M. (2004) Modulation of trigeminal sensory neuron activity by the dual cannabinoidvanilloid agonists anandamide, N-arachidonoyl-dopamine and arachidonyl-2-chloroethylamide. Br. J. Pharmacol. 141, 1118–1130.

    Article  PubMed  CAS  Google Scholar 

  10. Shaw, G. (1996) The pleckstrin homology domain:an intriguing multifunctional protein module. Bioessays 18, 35–46.

    Article  PubMed  CAS  Google Scholar 

  11. Varnai, P. and Balla, T. (1998) Visualization of phosphoinositides that bind pleckstrin homology domains:calcium-and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell. Biol. 143, 501–510.

    Article  PubMed  CAS  Google Scholar 

  12. Hirose, K., Kadowaki, S., Tanabe, M., Takeshima, H., and Iino, M. (1999) Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science 284, 1527–1530.

    Article  PubMed  CAS  Google Scholar 

  13. Nash, M. S., Young, K. W., Willars, G. B., Challiss, R. A., and Nahorski, S. R. (2001) Single-cell imaging of graded Ins(1,4,5)P3 production following G-proteincoupled-receptor activation. Biochem. J. 356, 137–142.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Gamper, N., Shapiro, M.S. (2006). Exogenous Expression of Proteins in Neurons Using the Biolistic Particle Delivery System. In: Stockand, J.D., Shapiro, M.S. (eds) Ion Channels. Methods in Molecular Biology™, vol 337. Humana Press. https://doi.org/10.1385/1-59745-095-2:27

Download citation

  • DOI: https://doi.org/10.1385/1-59745-095-2:27

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-576-7

  • Online ISBN: 978-1-59745-095-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics