Ion Channels pp 127-137 | Cite as

Juxtacellular Labeling and Chemical Phenotyping of Extracellularly Recorded Neurons In Vivo

  • Glenn M. Toney
  • Lynette C. Daws
Part of the Methods in Molecular Biology™ book series (MIMB, volume 337)

Abstract

Extracellular recording of the action potential discharge of individual neurons has been an indispensable electrophysiological method for more than 50 yr. Although it requires relatively modest instrumentation, extracellular recording nevertheless provides critically important information concerning the patterning of intercellular communication in the nervous system. In 1996, Didier Pinault described “juxtacellular labeling” as “a novel and very effective single-cell labeling method” for revealing the morphology of extracellularly recorded neurons. Of particular interest for neuroscience is that juxtacellular labeling can be combined with immunocytochemistry and in situ hybridization histochemistry to reveal new and exciting information concerning the chemical phenotype of neurons whose electrophysiological properties have been characterized in vivo. By providing investigators with a means to “match” functional information from electrophysiological recordings with morphological and protein/gene expression data at the level of the single neuron, juxtacellular labeling has opened a new era in neuroscience research, one that holds the promise of an accelerated pace of discovery.

Key Words

Confocal microscopy cellular morphology electrophysiology extracellular recording histochemistry immunocytochemistry in situ hybridization 

References

  1. 1.
    Aston-Jones, G. S. and Siggins, G. R. (1995) Electrophysiology, in Psychopharmacology:The Fourth Generation of Progress (Bloom F. E. and Kupfer D. J.,eds.), Raven Press, New York, pp. 41–63.Google Scholar
  2. 2.
    Sherman-Gold, R. (ed.). (1993) Instrumentation for measuring bioelectric signals from cells, in The Axon Guide For Electrophysiology and Biophysics Labortory Techniques, Axon Instruments, Foster City, CA, pp. 17–24.Google Scholar
  3. 3.
    Sherman-Gold, R. (ed.) (1993) Antidromic activation of neurones as an analytic tool in the study of the central nervous system. J. Neurosci. Methods 4 Same ref. below, Axon Instruments, Foster City, CA, pp. 25–80.Google Scholar
  4. 4.
    Lipski, J. (1981) Antidromic activation of neurones as an analytic tool in the study of the central nervous system. J. Neurosci. Methods 4, 1–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Stone, T. W. (1985) Microiontophoresis and Pressure Ejection, Wiley, New York.Google Scholar
  6. 6.
    Blanche, T. J., Spacek, M. A., Hetke, J. F., and Swindale, N. V. (2004) Polytrodes: high density silicon electrode arrays for large scale multiunit recording [Epub]. J. Neurophysiol. PMID 15548620.Google Scholar
  7. 7.
    Super, H. and Roelfsema, P. R. (2005) Chronic multiunit recordings in behaving animals: advantages and limitations. Prog. Brain Res. 147, 263–282.PubMedCrossRefGoogle Scholar
  8. 8.
    Pinault, D. (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or neurobiotin. J. Neurosci. Methods 65, 113–136.PubMedCrossRefGoogle Scholar
  9. 9.
    Guyenet, P. G., Stornetta, R. L., Weston, M. C., McQuiston, T., and Simmons, J. R. (2004) Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons. Auton. Neurosci. 114, 1–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Bassant, M. H., Simon, A., Poindessous-Jazat, F., Csaba, Z., Epelbaum, J., and Dournaud, P. (2005) Medial septal GABAergic neurons express the somatostatin sst2A receptor: functional consequences on unit firing and hippocampal theta. J. Neurosci. 25, 2032–2041.PubMedCrossRefGoogle Scholar
  11. 11.
    Allers, K. A. and Sharp, T. (2003) Neurochemical and anatomical identification of fast-and slow-firing neurons in the rat dorsal raphe nucleus using juxtacellular labeling methods in vivo. Neuroscience 122, 193–204.PubMedCrossRefGoogle Scholar
  12. 12.
    Schreihofer, A. M. and Guyenet, P. G. (1997) Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J. Comp. Neurol. 387, 524–536.PubMedCrossRefGoogle Scholar
  13. 13.
    Washburn, C. P., Bayliss, D. A., and Guyenet, P. G. (2003) Cardiorespiratory neurons of the rat ventrolateral medulla contain TASK-1 and TASK-3 channel mRNA. Resp. Physiol. Neurobiol. 138, 19–35.CrossRefGoogle Scholar
  14. 14.
    Simpson, J. I., Hulscher, H. C., Sabel-Goedknegt, E., and Ruigrok, T. J. (2004) Between in and out: linking morphology and physiology of cerebellar cortical interneurons. Prog. Brain Res. 148, 329–340.CrossRefGoogle Scholar
  15. 15.
    Arnott, R. H., Wallace, M. N., Shackleton, T. M., and Palmer, A. R. (2004) Onset neurones in the anteroventral cochlear nucleus project to the dorsal cochlear nucleus. J. Assoc. Res. Otolaryngol. 5, 153–170.PubMedGoogle Scholar
  16. 16.
    Mulkey, D. K., Stornetta, R. L., Weston, M. C., et al. (2004) Respiratory control by ventral surface chemoreceptor neurons in rats. Nat. Neurosci. 7, 1360–1369.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Glenn M. Toney
  • Lynette C. Daws

There are no affiliations available

Personalised recommendations