Skip to main content

“Chip”ping Away at Heart Failure

  • Protocol
Congenital Heart Disease

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 126))

  • 712 Accesses

Abstract

Studies in the field of microarray technology have exploded onto the scene to delve into the unknown underlying mechanisms and pathways in molecular disease. Diseases of the cardio-vascular system, particularly those with unexplained molecular etiologies, such as heart failure, have more recently been investigated using array technology. Our laboratory has sought to examine gene expression profiles of human heart failure using a 10,000+ element cardio-vascular-based complementary DNA microarray constructed in-house, termed the “CardioChip.” Our studies have identified panels of genes, such as those encoding sarcomeric and cytoskeletal proteins, stress proteins, and Ca2+ regulators, that are differentially expressed in disease conditions as compared with samples from nonfailing hearts. Microarrays are effective tools for examining molecular portraits of the cardiovascular disease condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Towbin, J. A. and Bowles, N. E. (2000) Genetic abnormalities responsible for dilated cardiomyopathy. Curr. Cardiol. Rep. 2, 475–480.

    Article  CAS  PubMed  Google Scholar 

  2. Hwang, J. J., Dzau, V. J., and Liew, C. C. (2001) Genomics and the pathophysiol-ogy of heart failure. Current Cardiol. Rep. 3, 198–207.

    Article  CAS  Google Scholar 

  3. Jandreski, M. A. and Liew, C. C. (1987) Construction of a human ventricular cDNA library and characterization of a beta myosin heavy chain cDNA clone. Hum. Genet. 76, 47–53.

    Article  CAS  PubMed  Google Scholar 

  4. Liew, C. C. (1993) A human heart cDNA library—the development of an efficient and simple method for automated DNA sequencing. J. Mol. Cell. Cardiol. 25, 891–894.

    Article  CAS  PubMed  Google Scholar 

  5. Hwang, D. M., Hwang, W. S., and Liew, C. C. (1994) Single pass sequencing of a unidirectional human fetal heart cDNA library to discover novel genes of the cardiovascular system. J. Mol. Cell. Cardiol. 26, 1329–1333.

    Article  CAS  PubMed  Google Scholar 

  6. Hwang, D. M., Dempsey, A. A., Wang, R. X., et al. (1997) A genome-based resource for molecular cardiovascular medicine: toward a compendium of cardio-vascular genes. Circulation 96, 4146–4203.

    CAS  PubMed  Google Scholar 

  7. Liew, C. C., Hwang, D. M., Fung, Y. W., et al. (1994) A catalogue of genes in the cardiovascular system as identified by expressed sequence tags. Proc. Natl. Acad. Sci. USA 91, 10,645–10,649.

    Article  CAS  PubMed  Google Scholar 

  8. Barrans, J. D. (2002) Genomic Exploration of Cardiovascular-Based Gene Expression, PhD Thesis, University of Toronto, Department of Laboratory Medicine and Pathobiology.

    Google Scholar 

  9. Liew, C. C., Hwang, D. M., Wang, R. X., et al. (1997) Construction of a human heart cDNA library and identification of cardiovascular based genes (CVBest). Mol. Cell. Biochem. 172, 81–87.

    Article  CAS  PubMed  Google Scholar 

  10. Shalon, D., Smith, S. J., and Brown, P. O. (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridiza-tion. Genome Res. 6, 639–645.

    Article  CAS  PubMed  Google Scholar 

  11. DeRisi, J., Penland, L., Brown, P. O., et al. (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14, 457–460.

    Article  CAS  PubMed  Google Scholar 

  12. Lau, W. Y., Lai, P. B., Leung, M. F., et al. (2000) Differential gene expression of hepatocellular carcinoma using cDNA microarray analysis. Oncol. Res. 12, 59–69.

    CAS  PubMed  Google Scholar 

  13. Wolf, M., El-Rifai, W., Tarkkanen, M., et al. (2000) Novel findings in gene expression detected in human osteosarcoma by cDNA microarray. Cancer Genet. Cytogenet. 123, 128–132.

    Article  CAS  PubMed  Google Scholar 

  14. van’ t Veer, L. J., Dai, H., van de Vijver, M. J., et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536.

    Article  Google Scholar 

  15. Mori, M., Mimori, K., Yoshikawa, Y., et al. (2002) Analysis of the gene-expression profile regarding the progression of human gastric carcinoma. Surgery 131(1 Suppl), S39–47.

    Article  PubMed  Google Scholar 

  16. Hippo, Y., Taniguchi, H., Tsutsumi, S., et al. (2002) Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res. 62, 233–240.

    CAS  PubMed  Google Scholar 

  17. Alizadeh, A., Eisen, M., Davis, R. E., et al. (1999) The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb. Symp. Quant. Biol. 64, 71–78.

    Article  CAS  PubMed  Google Scholar 

  18. Alizadeh, A. A., Eisen, M. B., Davis, R. E., et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511.

    Article  CAS  PubMed  Google Scholar 

  19. Shipp, M. A., Ross, K. N., Tamayo, P., et al. (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8, 68–74.

    Article  CAS  PubMed  Google Scholar 

  20. Granjeaud, S., Nguyen, C., Rocha, D., Luton, R., and Jordan, B.R. (1996) From hybridization image to numerical values: a practical, high throughput quantifica-tion system for high density filter hybridizations. Genet. Anal. 12, 151–162.

    CAS  PubMed  Google Scholar 

  21. Bertucci, F., Bernard, K., Loriod, B., et al. (1999) Sensitivity issues in DNA array-based expression measurements and performance of nylon microarrays for small samples. Hum. Mol. Genet. 8, 1715–1722.

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen, C., Rocha, D., Granjeaud, S., et al. (1995) Differential gene expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones. Genomics 29, 207–216.

    Article  CAS  PubMed  Google Scholar 

  23. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative moni-toring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  CAS  PubMed  Google Scholar 

  24. Lockhart, D. J. and Winzeler, E. A. (2000) Genomics, gene expression and DNA arrays. Nature 405, 827–836.

    Article  CAS  PubMed  Google Scholar 

  25. Bowtell, D. D. (1999) Options available—from start to finish—for obtaining expression data by microarray. Nat. Genet. 21(1 Suppl), 25–32.

    Article  CAS  PubMed  Google Scholar 

  26. Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J. (1999) High density synthetic oligonucleotide arrays. Nat. Genet. 21(1 Suppl), 20–24.

    Article  CAS  PubMed  Google Scholar 

  27. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P. O., and Davis, R. W. (1996) Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 93, 10,614–10,619.

    Article  CAS  PubMed  Google Scholar 

  28. Stanton, L. W., Garrard, L. J., Damm, D., et al. (2000) Altered patterns of gene expression in response to myocardial infarction. Circ. Res. 86, 939–945.

    CAS  PubMed  Google Scholar 

  29. Yang, J., Moravec, C. S., Sussman, M. A., et al. (2000) Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation 102, 3046–3052.

    CAS  PubMed  Google Scholar 

  30. Yang, J., Moravec, C. S., Sussman, M. A., et al. (2000) Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 97, 6745–6750.

    Article  Google Scholar 

  31. Hanatani, A., Yoshiyama, M., Kim, S., et al. (1998) Assessment of cardiac function and gene expression at an early phase after myocardial infarction. Jpn. Heart J. 39, 375–388.

    CAS  PubMed  Google Scholar 

  32. Mittmann, C., Munstermann, U., Weil, J., et al. (1998) Analysis of gene expression patterns in small amounts of human ventricular myocardium by a multiplex RNase protection assay. J. Mol. Med. 76, 133–140.

    Article  CAS  PubMed  Google Scholar 

  33. Lowes, B. D., Minobe, W., and Abraham, W. T. (1997) Changes in gene expression in the intact human heart: downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J. Clin. Invest. 100, 2315–2324.

    Article  CAS  PubMed  Google Scholar 

  34. Mendez, R. E., Pfeffer, J. M., Ortola, F. V., et al. (1987) Atrial natriuretic peptide transcription, storage, and release in rats with myocardial infarction. Am. J. Physiol. 253, H1449–1455.

    CAS  PubMed  Google Scholar 

  35. Friddle, C. J., Koga, T., Rubin, E. M., et al. (2000) Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 97, 6745–6750.

    Article  CAS  PubMed  Google Scholar 

  36. Haase, D., Lehmann, M. H., Korner, M. M., et al. (2002) Identification and valida-tion of selective upregulation of ventricular myosin light chain type 2 mRNA in idiopathic dilated cardiomyopathy. Eur. J. Heart Fail. 4, 23–31.

    Article  CAS  PubMed  Google Scholar 

  37. Napoli, C., Lerman, L.O., Sica, V., Lerman, A., Tajana, G., and de Nigris, F. (2003) Microarray analysis: a novel research tool for cardiovascular scientists and physicians. Heart 89, 597–604.

    Article  CAS  PubMed  Google Scholar 

  38. Grzeskowiak, R., Witt, H., Drungowski, M., et al. (2003) Expression profiling of human idiopathic dilated cardiomyopathy. Cardiovasc. Res. 59, 400–411.

    Article  CAS  PubMed  Google Scholar 

  39. Steenbergen, C., Afshari, C. A., Petrank, J. G., et al. Alterations in apoptotic signaling in human idiopathic cardiomyopathic hearts in failure. Am. J. Physiol. Heart. Circ. Physiol. 284, H268–H276.

    Google Scholar 

  40. Kapoun, A. M., Liang, F., O’Young, G., et al. B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-β in primary human cardiac fibroblasts. Fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ. Res. 94, 453–461.

    Google Scholar 

  41. Chen, M. M., Ashley, E. A., Deng, D. X., et al. (2003) Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation 108, 1432–1439.

    Article  CAS  PubMed  Google Scholar 

  42. Barrans, J. D., Stamatiou, D., and Liew, C. C. (2001) Construction of a human cardiovascular cDNA microarray: portrait of the failing heart. Biochem. Biophys. Res. Comm. 280, 964–969.

    Article  CAS  PubMed  Google Scholar 

  43. Barrans, J. D., Allen, P. D., Stamatiou, D., Dzau, V. J., and Liew, C. C. (2002) Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am. J. Path. 160, 2035–2043.

    Article  CAS  PubMed  Google Scholar 

  44. Hwang, J. J., Allen, P. D., Tsseng, G. C., et al. (2002) Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol. Genomics 10, 31–44.

    CAS  PubMed  Google Scholar 

  45. Liew, C. C. and Dzau, V. (2004) Molecular genetics and genomics of heart failure. Nat. Rev. Genet. 5, 811–825.

    Article  CAS  PubMed  Google Scholar 

  46. Liew, C. C. (2005) Expressed genome molecular signatures of heart failure. Clin. Chem. Lab. Med. 43, 462–469.

    Article  CAS  PubMed  Google Scholar 

  47. Cunha-Neto, E., Dzau, V. J., Allen, P. D., et al. (2005) Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas disease cardiomyopathy. Am. J. Path. 167, 305–313.

    Article  CAS  PubMed  Google Scholar 

  48. Hwang, D. M., Dempsey, A. A., Lee, C. Y., and Liew, C. C. (2000) Identification of differentially expressed genes in cardiac hypertrophy by analysis of expressed sequence tags. Genomics 66, 1–14.

    Article  CAS  PubMed  Google Scholar 

  49. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

David Barrans, J., Liew, CC. (2006). “Chip”ping Away at Heart Failure. In: Kearns-Jonker, M. (eds) Congenital Heart Disease. Methods in Molecular Medicine, vol 126. Humana Press. https://doi.org/10.1385/1-59745-088-X:157

Download citation

  • DOI: https://doi.org/10.1385/1-59745-088-X:157

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-375-6

  • Online ISBN: 978-1-59745-088-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics