Skip to main content

Introduction

  • Protocol
  • 735 Accesses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 126))

Abstract

This chapter introduces the book by providing a summary of the detailed technical information regarding the materials, reagents, and experimental procedures presented in each chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hinton, R. B., Yutzey, K. E., and Benson, D. W. (2005) Congenital heart disease: genetic causes and developmental insights. Prog. Pediatr. Cardiol. 20, 101–111.

    Article  Google Scholar 

  2. Matsuoka, R., Kimura, M., Scambler, P. J., et al. (1998) Molecular and clinical study of 183 patients with conotruncal anomaly face syndrome. Hum. Genet. 103, 70–80.

    Article  CAS  PubMed  Google Scholar 

  3. Driscoll, D. A., Budarf, M. L., and Emanuel, B. S. (1992) A genetic etiology for DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am. J. Hum. Genet. 50, 924–933.

    CAS  PubMed  Google Scholar 

  4. Wilson, D. I., Cross, I. E., Goodship, J. A., et al. (1992) A prospective cytogenetic study of 36 cases of DiGeorge syndrome. Am. J. Hum. Genet. 51, 957–963.

    CAS  PubMed  Google Scholar 

  5. Desmaze, C., Scambler, P., Prieur, M., et al. (1993) Routine diagnosis of DiGeorge syndrome by fluorescent in situ hybridization. Hum. Genet. 90, 663–665.

    Article  CAS  PubMed  Google Scholar 

  6. McDonald-McGinn, D. M., Tonnesen, M. K., Laufer-Cahana, A., et al. (2001) Phenotype of the 22q11.2 deletion in individuals identified through an affected relative: cast a wide FISHing net! Genet. Med. 3, 23–29.

    Article  CAS  PubMed  Google Scholar 

  7. Digilio, M. C., Angioni, A., De Santis, M., et al. (2003) Spectrum of clinical variability in familial deletion 22q11.2: from full manifestation to extremely mild clinical anomalies. Clin. Genet. 63, 308–313.

    Article  CAS  PubMed  Google Scholar 

  8. Shooner, K. A., Rope, A. F., Hopkin, R. J., Andelfinger, G. U., and Benson, D. W. (2005) Genetic analyses in two extended families with deletion 22q11 syndrome: importance of extracardiac manifestations. J. Pediatr. 146, 382–387.

    Article  CAS  PubMed  Google Scholar 

  9. McDonald-McGinn, D. M., LaRossa, D., Goldmuntz, E., et al. (1997) The 22q11.2 deletion: screening, diagnostic workup, and outcome of results; report on 181 patients. Genet. Test. 1, 99–108.

    Article  CAS  PubMed  Google Scholar 

  10. Perez, E. and Sullivan, K. E. (2002) Chromosome 22q11.2 deletion syndrome (DiGeorge and velocardiofacial syndromes). Curr. Opin. Pediatr. 14, 678–683.

    Article  PubMed  Google Scholar 

  11. Cuneo, B. F. (2001) 22q11.2 deletion syndrome: DiGeorge, velocardiofacial, and conotruncal anomaly face syndromes. Curr. Opin. Pediatr. 13, 465–472.

    Article  CAS  PubMed  Google Scholar 

  12. McDonald-McGinn, D. M., Kirschner, R., Goldmuntz, E., et al. (1999) The Philadelphia story: the 22q11.2 deletion: report on 250 patients. Genet. Couns. 10, 11–24.

    CAS  PubMed  Google Scholar 

  13. Botto, L. D., May, K., Fernhoff, P. M., et al. (2003) A population-based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population. Pediatrics 112, 101–107.

    Article  PubMed  Google Scholar 

  14. Ryan, A. K., Goodship, J. A., Wilson, D. I., et al. (1997) Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J. Med. Genet. 34, 798–804.

    Article  CAS  PubMed  Google Scholar 

  15. Swillen, A., Devriendt, K., Vantrappen, G., et al. (1998) Familial deletions of chromosome 22q11: the Leuven experience. Am. J. Med. Genet. 80, 531–532.

    Article  CAS  PubMed  Google Scholar 

  16. McElhinney, D. B., McDonald-McGinn, D., Zackai, E. H., and Goldmuntz, E. (2001) Cardiovascular anomalies in patients diagnosed with a chromosome 22q11 deletion beyond 6 months of age. Pediatrics 108, E104.

    Article  CAS  PubMed  Google Scholar 

  17. Cohen, E., Chow, E. W., Weksberg, R., and Bassett, A. S. (1999) Phenotype of adults with the 22q11 deletion syndrome: a review. Am. J. Med. Genet. 86, 359–365.

    Article  CAS  PubMed  Google Scholar 

  18. Mahle, W. T., Crisalli, J., Coleman, K., et al. (2003) Deletion of chromosome 22q11.2 and outcome in patients with pulmonary atresia and ventricular septal defect. Ann. Thorac. Surg. 76, 567–571.

    Article  PubMed  Google Scholar 

  19. Keating, M., Atkinson, D., Dunn, C., Timothy, K., Vincent, G. M., and Leppert, M. (1991) Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science 252, 704–706.

    Article  CAS  PubMed  Google Scholar 

  20. Benson, D. W. (2004) Genetics of atrioventricular conduction disease in humans. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 280, 934–939.

    Article  PubMed  Google Scholar 

  21. Brugada, P., Brugada, R., Antzelevitch, C., and Brugada, J. (2005) The Brugada syndrome. Arch. Mal. Coeur. Vaiss. 98, 115–122.

    CAS  PubMed  Google Scholar 

  22. McNair, W. P., Ku, L., Taylor, M. R., et al. (2004) SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 110, 2163–2167.

    Article  CAS  PubMed  Google Scholar 

  23. Olson, T. M., Michels, V. V., Ballew, J. D., et al. (2005) Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA. 293, 447–454.

    Article  CAS  PubMed  Google Scholar 

  24. Benson, D. W., Wang, D. W., Dyment, M., et al. (2003) Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J. Clin. Invest. 112, 1019–1028.

    CAS  PubMed  Google Scholar 

  25. Arad, M., Benson, D. W., Perez-Atayde, A. R., et al. (2002) Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J. Clin. Invest. 109, 357–362.

    CAS  PubMed  Google Scholar 

  26. Laitinen, P. J., Brown, K. M., Piippo, K., et al. (2001) Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 103, 485–490.

    CAS  PubMed  Google Scholar 

  27. Priori, S. G., Napolitano, C., Tiso, N., et al. (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103, 196–200.

    CAS  PubMed  Google Scholar 

  28. Lahat, H, Pras, E, Olender, T, et al. (2001) A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamineinduced polymorphic ventricular tachycardia in Bedouin families from Israel. Am. J. Hum. Genet. 69, 1378–1384.

    Article  CAS  PubMed  Google Scholar 

  29. Laohakunakorn, P., Benson, D. W., Yang, P., Yang, T., Roden, D. M., and Kugler, J. D. (2003) Bidirectional ventricular tachycardia and channelopathy. Am. J. Cardiol. 92, 991–995.

    Article  PubMed  Google Scholar 

  30. Bloise, R., Napolitano, C., and Priori, S. G. (2002) Romano-Ward and other congenital long QT syndromes. Cardiovasc. Drugs Ther. 16, 19–23.

    Article  PubMed  Google Scholar 

  31. Kainulainen, K., Pulkkinen, L., Savolainen, A., Kaitila, I., and Peltonen, L. (1990) Location on chromosome 15 of the gene defect causing Marfan syndrome. N. Engl. J. Med. 323, 935–939.

    Article  CAS  PubMed  Google Scholar 

  32. Dietz, H. C., Cutting, G. R., Pyeritz, R. E., et al. (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337–339.

    Article  CAS  PubMed  Google Scholar 

  33. Robinson, P. N. and Godfrey, M. (2000) The molecular genetics of Marfan syndrome and related microfibrillopathies. J. Med. Genet. 37, 9–25.

    Article  CAS  PubMed  Google Scholar 

  34. Byers, P. H. (2004) Determination of the molecular basis of Marfan syndrome: a growth industry. J. Clin. Invest. 114, 161–163.

    CAS  PubMed  Google Scholar 

  35. Judge, DP, Biery, NJ, Keene, DR, et al. (2004) Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J. Clin. Invest. 114, 172–181.

    CAS  PubMed  Google Scholar 

  36. Allanson, J. E. (1987) Noonan syndrome. J. Med. Genet. 24, 9–13.

    Article  CAS  PubMed  Google Scholar 

  37. Noonan, J. A. (1968) Hypertelorism with Turner phenotype. A new syndrome with associated congenital heart disease. Am. J. Dis. Child. 116, 373–380.

    CAS  PubMed  Google Scholar 

  38. Jamieson, C. R., van der Burgt, I., Brady, A. F., et al. (1994) Mapping a gene for Noonan syndrome to the long arm of chromosome 12. Nat. Genet. 8, 357–360.

    Article  CAS  PubMed  Google Scholar 

  39. Brady, A. F., Jamieson, C. R., van der Burgt, I., et al. (1997) Further delineation of the critical region for noonan syndrome on the long arm of chromosome 12. Eur. J. Hum. Genet. 5, 336–337.

    CAS  PubMed  Google Scholar 

  40. Tartaglia, M., Mehler, E. L., Goldberg, R., et al. (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 29, 465–468.

    Article  CAS  PubMed  Google Scholar 

  41. Tartaglia, M., Kalidas, K., Shaw, A., et al. (2002) PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am. J. Hum. Genet. 70, 1555–1563.

    Article  CAS  PubMed  Google Scholar 

  42. Tartaglia, M., Niemeyer, C. M., Fragale, A., et al. (2003) Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150.

    Article  CAS  PubMed  Google Scholar 

  43. Curran, M. E., Atkinson, D. L., Ewart, A. K., Morris, C. A., Leppert, M. F., and Keating, M. T. (1993) The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell 73, 159–168.

    Article  CAS  PubMed  Google Scholar 

  44. Ewart, A. K., Morris, C. A., Atkinson, D., et al. (1993) Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat. Genet. 5, 11–16.

    Article  CAS  PubMed  Google Scholar 

  45. Li, D. Y., Toland, A. E., Boak, B. B., et al. (1997) Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum. Mol. Genet. 6, 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  46. Hallidie-Smith, K. A. and Karas, S. (1988) Cardiac anomalies in Williams-Beuren syndrome. Arch. Dis. Child. 63, 809–813.

    Article  CAS  PubMed  Google Scholar 

  47. Eronen, M., Peippo, M., Hiippala, A., et al. (2002) Cardiovascular manifestations in 75 patients with Williams syndrome. J. Med. Genet. 39, 554–558.

    Article  CAS  PubMed  Google Scholar 

  48. Stromme, P., Bjornstad, P. G., and Ramstad K. (2002) Prevalence estimation of Williams syndrome. J. Child. Neurol. 17, 269–271.

    Article  PubMed  Google Scholar 

  49. Osborne, L. R., Li, M., Pober, B., et al. (2001) A 1.5 million-base pair inversion polymorphism in families with Williams-Beuren syndrome. Nat. Genet. 29, 321–325.

    Article  CAS  PubMed  Google Scholar 

  50. Morris, C. A., Mervis, C. B., Hobart, H. H., et al. (2003) GTF2I hemizygosity implicated in mental retardation in Williams syndrome: genotype-phenotype analysis of five families with deletions in the Williams syndrome region. Am. J. Med. Genet. A. 123, 45–59.

    Article  Google Scholar 

  51. Richardson, P., McKenna, W., Bristow, M., et al. (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93, 841–842.

    CAS  PubMed  Google Scholar 

  52. Seidman, J. G. and Seidman, C. (2001) The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104, 557–567.

    Article  CAS  PubMed  Google Scholar 

  53. Ahmad, F. (2003) The molecular genetics of arrhythmogenic right ventricular dysplasia-cardiomyopathy. Clin. Invest. Med. 26, 167–178.

    CAS  PubMed  Google Scholar 

  54. Chien, K. R. (2003) Genotype, phenotype: upstairs, downstairs in the family of cardiomyopathies. J. Clin. Invest. 111, 175–178.

    CAS  PubMed  Google Scholar 

  55. Hwang, J. J., Dzau, V. J., and Liew, C. C. (2001) Genomics and the pathophysiology of heart failure. Curr. Cardiol. Rep. 3, 198–207.

    Article  CAS  PubMed  Google Scholar 

  56. Hwang, J. J., Allen, P. D., Tseng, G. C., et al. (2002) Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol. Genomics 10, 31–44.

    CAS  PubMed  Google Scholar 

  57. Li, K. C., Liu, C. T., Sun, W., Yuan, S., and Yu, T. (2004) A system for enhancing genome-wide coexpression dynamics study. Proc. Natl. Acad. Sci. USA 101, 15,561–15,566.

    Article  CAS  PubMed  Google Scholar 

  58. Takahashi, M., Lin, Y. M., Nakamura, Y., and Furukawa, Y. (2004) Isolation and characterization of a novel gene CLUAP1 whose expression is frequently upregulated in colon cancer. Oncogene 23, 9289–9294.

    Article  CAS  PubMed  Google Scholar 

  59. Barrans, J. D., Allen, P. D., Stamatiou, D., Dzau, V. J., and Liew, C. C. (2002) Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am. J. Pathol. 160, 2035–2043.

    Article  CAS  PubMed  Google Scholar 

  60. Plaster, N. M., Tawil, R., Tristani-Firouzi, M., et al. (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105, 511–519.

    Article  CAS  PubMed  Google Scholar 

  61. Andelfinger, G., Tapper, A. R., Welch, R. C., Vanoye, C. G., George, A. L., Jr., and Benson D. W. (2002) KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am. J. Hum. Genet. 71, 663–668.

    Article  CAS  PubMed  Google Scholar 

  62. Tristani-Firouzi, M., Jensen, J. L., Donaldson, M. R., et al. (2002) Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J. Clin. Invest. 110, 381–388.

    CAS  PubMed  Google Scholar 

  63. Isaacs, H., Jr. (2004) Fetal and neonatal cardiac tumors. Pediatr. Cardiol. 25, 252–273.

    Article  PubMed  Google Scholar 

  64. Jones, A. C., Shyamsundar, M. M., Thomas, M. W., et al. (1999) Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am. J. Hum. Genet. 64, 1305–1315.

    Article  CAS  PubMed  Google Scholar 

  65. Pandolfo, M. (2001) Molecular basis of Friedreich ataxia. Mov. Disord. 16, 815–821.

    Article  CAS  PubMed  Google Scholar 

  66. Palau, F. (2001) Friedreich’s ataxia and frataxin: molecular genetics, evolution and pathogenesis (Review). Int. J. Mol. Med. 7, 581–589.

    CAS  PubMed  Google Scholar 

  67. Harding, A. E. (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104, 589–620.

    Article  CAS  PubMed  Google Scholar 

  68. Chamberlain, S., Shaw, J., Rowland, A., et al. (1988) Mapping of mutation causing Friedreich’s ataxia to human chromosome 9. Nature 334, 248–250.

    Article  CAS  PubMed  Google Scholar 

  69. Campuzano, V., Montermini, L., Molto, M. D., et al. (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427.

    Article  CAS  PubMed  Google Scholar 

  70. Campuzano, V., Montermini, L., Lutz, Y., et al. (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum. Mol. Genet. 6, 1771–1780.

    Article  CAS  PubMed  Google Scholar 

  71. Cossee, M., Durr, A., Schmitt, M., et al. (1999) Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann. Neurol. 45, 200–206.

    Article  CAS  PubMed  Google Scholar 

  72. Cavadini, P., Gellera, C., Patel, P. I., and Isaya, G. (2000) Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum. Mol. Genet. 9, 2523–2530.

    Article  CAS  PubMed  Google Scholar 

  73. Yoon, T. and Cowan, J. A. (2004) Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J. Biol. Chem. 279, 25,943–25,946.

    Article  CAS  PubMed  Google Scholar 

  74. Voncken, M., Ioannou, P., and Delatycki, M. B. (2004) Friedreich ataxia-update on pathogenesis and possible therapies. Neurogenetics 5, 1–8.

    Article  PubMed  Google Scholar 

  75. Watson, G. H. and Miller, V. (1973) Arteriohepatic dysplasia: familial pulmonary arterial stenosis with neonatal liver disease. Arch. Dis. Child. 48, 459–466.

    Article  CAS  PubMed  Google Scholar 

  76. Alagille, D., Odievre, M., Gautier, M. and Dommergues, J. P. (1975) Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental, and sexual development, and cardiac murmur. J. Pediatr. 86, 63–71.

    Article  CAS  PubMed  Google Scholar 

  77. McElhinney, D. B., Krantz, I. D., Bason, L., et al. (2002) Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation 106, 2567–2574.

    Article  PubMed  Google Scholar 

  78. Krantz, I. D., Smith, R., Colliton, R. P., et al. (1999) Jagged1 mutations in patients ascertained with isolated congenital heart defects. Am. J. Med. Genet. 84, 56–60.

    Article  CAS  PubMed  Google Scholar 

  79. Eldadah, Z. A., Hamosh, A., Biery, N. J., et al. (2001) Familial tetralogy of Fallot caused by mutation in the jagged1 gene. Hum. Mol. Genet. 10, 163–169.

    Article  CAS  PubMed  Google Scholar 

  80. Le Caignec, C., Lefevre, M., Schott, J. J., et al. (2002) Familial deafness, congenital heart defects, and posterior embryotoxon caused by cysteine substitution in the first epidermal-growth-factor-like domain of jagged 1. Am. J. Hum. Genet. 71, 180–186.

    Article  PubMed  Google Scholar 

  81. Kamath, B. M., Spinner, N. B., Emerick, K. M., et al. (2004) Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 109, 1354–1358.

    Article  PubMed  Google Scholar 

  82. Ferencz, C., Rubin, J. D., McCarter, R. J. et al. (1985) Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. Am. J. Epidemiol. 121, 31–36.

    CAS  PubMed  Google Scholar 

  83. Goldmuntz, E., Clark, B. J., Mitchell, L. E., et al. (1998) Frequency of 22q11 deletions in patients with conotruncal defects. J. Am. Coll. Cardiol. 32, 492–498.

    Article  CAS  PubMed  Google Scholar 

  84. Ferenz, C., Correa-Villasenor, A., Loffredo, C. A. and Wilson, P. D. (1997) Malformations of the cardiac outflow tract. Genetic and environmental risk factors of major cardiovascular malformations: the Baltimore-Washington Infant Study: 1081-1989. Futura Publishing, Armonk, NY.

    Google Scholar 

  85. Benson, D. W., Silberbach, G. M., Kavanaugh-McHugh, A., et al. (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J. Clin. Invest. 104, 1567–1573.

    Article  CAS  PubMed  Google Scholar 

  86. Goldmuntz, E., Geiger, E. and Benson, D. W. (2001) NKX2.5 mutations in patients with tetralogy of fallot. Circulation 104, 2565–2568.

    Article  CAS  PubMed  Google Scholar 

  87. Kamath, B. M., Bason, L., Piccoli, D. A., Krantz, I. D. and Spinner, N. B. (2003) Consequences of JAG1 mutations. J. Med. Genet. 40, 891–895.

    Article  CAS  PubMed  Google Scholar 

  88. Pizzuti, A., Sarkozy, A., Newton, A. L., et al. (2003) Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum. Mutat. 22, 372–377.

    Article  CAS  PubMed  Google Scholar 

  89. Carmi, R., Boughman, J. A. and Rosenbaum, K. R. (1992) Human situs determination is probably controlled by several different genes. Am. J. Med. Genet. 44, 246–249.

    Article  CAS  PubMed  Google Scholar 

  90. Gebbia, M., Ferrero, G. B., Pilia, G., et al. (1997) X-linked situs abnormalities result from mutations in ZIC3. Nat. Genet. 17, 305–308.

    Article  CAS  PubMed  Google Scholar 

  91. Kosaki, K., Bassi, M. T., Kosaki, R., et al. (1999) Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am. J. Hum. Genet. 64, 712–721.

    Article  CAS  PubMed  Google Scholar 

  92. Kosaki, R., Gebbia, M., Kosaki, K., et al. (1999) Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am. J. Med. Genet. 82, 70–76.

    Article  CAS  PubMed  Google Scholar 

  93. Megarbane, A., Salem, N., Stephan, E., et al. (2000) X-linked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3. Eur. J. Hum. Genet. 8, 704–708.

    Article  CAS  PubMed  Google Scholar 

  94. Ware, S. M., Peng, J., Zhu, L., et al. (2004) Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am. J. Hum. Genet. 74, 93–105.

    Article  CAS  PubMed  Google Scholar 

  95. Bamford, R. N., Roessler, E., Burdine, R. D., et al. (2000) Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat. Genet. 26, 365–369.

    Article  CAS  PubMed  Google Scholar 

  96. Fatkin, D. and Graham, R. M. (2002) Molecular mechanisms of inherited cardiomyopathies. Physiol. Rev. 82, 945–980.

    CAS  PubMed  Google Scholar 

  97. Gerull, B., Heuser, A., Wichter, T., et al. (2004) Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat. Genet. 36, 1162–1164.

    Article  CAS  PubMed  Google Scholar 

  98. Burkett, E. L. and Hershberger, R. E. (2005) Clinical and genetic issues in familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 45, 969–981.

    Article  CAS  PubMed  Google Scholar 

  99. Schonberger, J., Wang, L., Shin, J. T., et al. (2005) Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat. Genet. 37, 418–422.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Woodrow Benson, D. (2006). Introduction. In: Kearns-Jonker, M. (eds) Congenital Heart Disease. Methods in Molecular Medicine, vol 126. Humana Press. https://doi.org/10.1385/1-59745-088-X:1

Download citation

  • DOI: https://doi.org/10.1385/1-59745-088-X:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-375-6

  • Online ISBN: 978-1-59745-088-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics