Skip to main content

Polyelectrolyte Coatings for Microchip Capillary Electrophoresis

  • Protocol
Microchip Capillary Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 339))

Abstract

In chip-based electrophoretic analysis of biomolecules, chemical modification of the microchannel is widely employed to reduce or eliminate the analyte-wall interactions and alter electroosmotic flow (EOF) in the microchannel. Astable polyelectrolyte multilayer coating is one common way to regulate or eliminate EOF and prevent analyte adsorption for the rapid, efficient separation of biomolecules within microchannels. A wide variety of polyelectrolytes have been used as coatings. This chapter deals with how to coat microchips with polyelectrolytes and the expected results using polybrene and dextran sulfate as models. The technique presented here is generally applicable to any polyelectrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barta C., Ronai Z., Nemoda Z., et al. (2001) Analysis of dopamine D4 receptor gene polymorphism using microchip electrophoresis. J. Chromatogr. A 924, 285–290.

    Article  CAS  Google Scholar 

  2. Fanguy J. C. and Henry C. S. (2002) Pulsed amperometric detection of carbohydrates on an electrophoretic microchip. Analyst 127, 1021–1023.

    Article  CAS  Google Scholar 

  3. Culbertson C. T., Jacobson S. C., and Ramsey J. M. (2000) Microchip devices for high-efficiency separations. Anal. Chem. 72, 5814–5819.

    Article  CAS  Google Scholar 

  4. Kopp M. U., Mello A. J., and Manz A. (1998) Chemical amplification: continuousflow PCR on a chip. Science 280, 1046–1048.

    Article  CAS  Google Scholar 

  5. Martin R. S., Gawron A. J., and Lunte S. M. (2000) Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips. Anal. Chem. 72, 3196–3202.

    Article  CAS  Google Scholar 

  6. McClain M. A., Culbertson C. T., Jacobson S. C., and Ramsey J. M. (2001) Flow cytometry of Escherichia coli on microfluidic devices. Anal. Chem. 73, 5334–5338.

    Article  CAS  Google Scholar 

  7. McDonald J. C., Duffy D. C., Anderson J. R., et al. (2000) Fabrication of a configurable, single-use microfluidic device. Electrophoresis 21, 27–40.

    Article  CAS  Google Scholar 

  8. Effenhauser C. S., Bruin G. J., and Paulus A. (1987) Integrated chip-based capillary electrophoresis. Electrophoresis 18, 2203–2213.

    Article  Google Scholar 

  9. Ocvirk G., Munroe M., Tang T., Oleschuk R., Westra K., and Harrison D. J. (2000) Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices. Electrophoresis 21, 107–115.

    Article  CAS  Google Scholar 

  10. Duffy D. C., McDonald J. C., Schueller O. J. A., and Whitesides G. M. (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4874–4884.

    Article  Google Scholar 

  11. Giordano B. C., Copeland E. R., and Landers J. P. (2001) Towards dynamic coating of glass microchip chambers for amplifying DNA via the polymerase chain reaction. Electrophoresis 22, 334–340.

    Article  CAS  Google Scholar 

  12. Badal M. Y., Wong M., Chiem N., Salimi-Moosavi H., and Harrison D. J. (2002) Protein separation and surfactant control of electroosmotic flow in poly(dimethylsiloxane)-coated capillaries and microchips. J. Chromatogr. A 947, 277–286.

    Article  Google Scholar 

  13. Horvath J. and Dolnik V. (2001) Polymer wall coatings for capillary electrophoresis. Electrophoresis 22, 644–655.

    Article  CAS  Google Scholar 

  14. Katayama H., Ishihama Y., and Asakawa N. (1998) Stable cationic capillary coating with successive multiple ionic polymer layers for capillary electrophoresis. Anal. Chem. 70, 5272–5277.

    Article  CAS  Google Scholar 

  15. Katayama H., Ishihama Y., and Asakawa N. (1998) Stable capillary coating with successive multiple ionic polymer layers. Anal. Chem. 70, 2254–2260.

    Article  CAS  Google Scholar 

  16. Huang X., Gordon M. J., and Zare R. N. (1988) Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Anal. Chem. 60, 1837, 1838.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Liu, Y., Henry, C.S. (2006). Polyelectrolyte Coatings for Microchip Capillary Electrophoresis. In: Henry, C.S. (eds) Microchip Capillary Electrophoresis. Methods in Molecular Biology, vol 339. Humana Press. https://doi.org/10.1385/1-59745-076-6:57

Download citation

  • DOI: https://doi.org/10.1385/1-59745-076-6:57

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-293-3

  • Online ISBN: 978-1-59745-076-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics