Skip to main content

Rapid DNA Amplification in Glass Microdevices

  • Protocol
  • 938 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 339))

Abstract

The polymerase chain reaction (PCR) for amplification of DNA has become a very useful tool in scientific research and analytical laboratories, yet conventional techniques are time-consuming, and the reagents are expensive. Miniaturization of this technique has the potential to drastically reduce amplification time and reagent consumption while simultaneously improving the efficiency of the reaction. Increasing the surface area-to-volume ratio using microfluidic reaction chambers allows homogeneous solution temperatures to be achieved much more rapidly than in conventional heating blocks. Employing infrared radiation to selectively heat the reaction solution can additionally reduce the time and energy needed for thermocycling; the reaction container is not heated and can even serve as a heat sink for enhancement of cooling. Microchip systems also provide the potential for fabrication of structures for additional processing steps directly in line with the PCR chamber. Not only can amplification be integrated with product separation and analysis, but sample preparation steps can also be incorporated prior to amplification. The ultimate goal is a miniature total-analysis-system with seamlessly coupled sample-in/answer-out capabilities that consumes very low volumes of reagents and drastically reduces the time for analysis. This chapter will focus on the materials and methods involved in simple straight-channel microchip PCR on glass substrates using non-contact thermocycling.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Saiki R. K., Scharf S., Faloona F., et al. (1985) Enzymatic amplification of betaglobin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.

    Article  CAS  Google Scholar 

  2. Mai M., Grabs R., Barnes R. D., Vafiadis P., and Polychronakos C. (1998) Shortened PCR cycles in a conventional thermal cycler. Biotechniques 25, 208–210.

    CAS  Google Scholar 

  3. Wittwer C. T. and Garling D. J. (1991) Rapid cycle DNA amplification: time and temperature optimization. Biotechniques 10, 76–83.

    CAS  Google Scholar 

  4. Wilding P., Shoffner M. A., and Kricka6L. J. (1994) PCR in a silicon microstructure. Clin. Chem. 40, 1815–1818.

    CAS  Google Scholar 

  5. Wilding P., Shoffner M. A., Cheng J., Huichia G., and Kricka L. J. (1995) Thermal cycling and surface passivation of micromachined devices for PCR. Clin. Chem. 41, 1367, 1368.

    CAS  Google Scholar 

  6. Kopp M. U., Mello6A. J., and Manz A. (1998) Chemical amplification: continuousflow PCR on a chip. Science 280, 1046–1048.

    Article  CAS  Google Scholar 

  7. Kricka L. J. and Wilding P. (2003) Microchip PCR. Anal. Bioanal. Chem. 377, 820–825.

    Article  CAS  Google Scholar 

  8. Waters L. C., Jacobson S. C., Kroutchinina N., Khandurina J., Foote R. S., and Ramsey J. M. (1998) Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal. Chem. 70, 158–162.

    Article  CAS  Google Scholar 

  9. Burns M. A., Mastrangelo C. H., Sammarco T. S., et al. (1996) Microfabricated structures for integrated DNA analysis. Proc. Natl. Acad. Sci. USA 93, 5556–5561.

    Article  CAS  Google Scholar 

  10. Lagally, E T., Emrich C. A., and Mathies R. A. (2001) Fully integrated PCRcapillary electrophoresis microsystem for DNA analysis. Lab on a Chip 1, 102–107.

    Article  CAS  Google Scholar 

  11. Koh C. G., Tan W., Zhao M. Q., Ricco A. J., and Fan Z. H. (2003) Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection. Anal. Chem. 75, 4591–4598.

    Article  CAS  Google Scholar 

  12. Oda R. P., Strausbauch M. A., Huhmer A. F., et al. (1998) Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA. Anal. Chem. 70, 4361–4368.

    Article  CAS  Google Scholar 

  13. Huhmer A. F. and Landers J. P. (2000) Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes. Anal. Chem. 72, 5507–5512.

    Article  CAS  Google Scholar 

  14. Giordano B. C., Ferrance J., Swedberg S. Huhmer A. F., and Landers J. P. (2001) Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Anal. Biochem. 291, 124–132.

    Article  CAS  Google Scholar 

  15. Ferrance J. P., Wu Q., Giordano B., et al. (2003) Developments toward a complete micro-total analysis system for Duchenne muscular dystrophy diagnosis. Analytica Chimica Acta 500, 223–236.

    Article  CAS  Google Scholar 

  16. Giordano B. C., Copeland E. R., and Landers J. P. (2001) Towards dynamic coating of glass microchip chambers for amplifying DNA via the polymerase chain reaction. Electrophoresis 22, 334–340.

    Article  CAS  Google Scholar 

  17. Chiari, M., Cretich, M., Damin, F., Ceriotti, L., and Consonni, R. (2000) New adsorbed coatings for capillary electrophoresis. Electrophoresis 21, 909–916.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Easley, C.J., Legendre, L.A., Landers, J.P., Ferrance, J.P. (2006). Rapid DNA Amplification in Glass Microdevices. In: Henry, C.S. (eds) Microchip Capillary Electrophoresis. Methods in Molecular Biology, vol 339. Humana Press. https://doi.org/10.1385/1-59745-076-6:217

Download citation

  • DOI: https://doi.org/10.1385/1-59745-076-6:217

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-293-3

  • Online ISBN: 978-1-59745-076-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics