Skip to main content

Single Cell Analysis on Microfluidic Devices

  • Protocol
Microchip Capillary Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 339))

  • 1001 Accesses

Abstract

There is significant variability among cells of the same type at the single cell level. This variability may be because of external stimuli that vary temporally or spatially among a population of cells. It may also be owing to the nonsynchronized responses of cells to various stimuli. In addition, differences in otherwise similar cells may be generated by genetic mutations acquired by one or more of the cells. Often times multiple biochemical pathways and molecules are involved in such differences. In order to better understand these differences and to detect those rare cells in a large population that may be indicative of early disease states, methods that are capable of rapidly quantifying multiple molecular species in single cells are desired. Microfluidic devices may provide the optimal platform upon which to develop such methods. Microfluidics has the capability of combining the high-throughput manipulation and transport of cells with rapid, high-efficiency separations and high-sensitivity detection. This chapter describes how to fabricate microfluidic devices for the high-throughput manipulation and rapid electrical lysis of single, nonadherent (suspension) cells followed by the injection and separation of the fluorescently labeled cell contents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lodish H., Baltimore D., Berk A., Zipursky S. L., Matsudaira P., and Darnell J. (1995) Molecular Cell Biology, 3rd Edition, Scientific American Books, New York, NY.

    Google Scholar 

  2. Zabzbyr J. L. and Lillard S. J. (2001) New Approaches to Single-cell Analysis by Capillary Electrophoresis. Trends Analyt. Chem. 20, 467–476.

    Article  Google Scholar 

  3. Sims C. E., Meredith G. D., Krasieva T. B., Berns M. W., Tromberg B. J., and Allbritton, N. L. (1998) Laser-micropipet combination for single-cell analysis. Anal. Chem. 70, 4570–4577.

    Article  CAS  Google Scholar 

  4. Berridge M. J. (1993) Inositol trisphosphate and calcium signalling. Nature 361, 312–325.

    Article  Google Scholar 

  5. Chen G. and Ewing A. G. (1997) Chemical analysis of single cells and exocytosis. Crit. Rev. Neurobiol. 11, 59–90.

    Google Scholar 

  6. Hsieh S., Dreisewerd, K., van der Schors R. C., et al. (1998) Separation and identification of peptides in single neurons by microcolumn liquid chromatographymatrix-assisted laser desorption/ionization time-of-flight mass spectrometry and postsource decay analysis. Anal. Chem. 70, 1847–1852.

    Article  CAS  Google Scholar 

  7. Hsieh S. and Jorgenson J. W. (1997) Determination of enzyme activity in single bovine adrenal medullary cells by separation of isotopically labeled catecholamines. Anal. Chem. 69, 3907–3914.

    Article  CAS  Google Scholar 

  8. Pihel K., Hsieh S., Jorgenson J. W., and Wightman R. M. (1995) Electrochemical detection of histamine and 5-hydroxytryptamine at isolated mast cells. Anal. Chem. 67, 4514–4521.

    Article  CAS  Google Scholar 

  9. Swanek F. D., Ferris S. S., and Ewing A. G. (1997) Capillary Electrophoresis for the Analysis of Single Cells: Electrochemical, Mass Spectrometric, and Radiochemical Detection. In: Handbook of Capillary Electrophoresis, (Khaledi M. G.,ed.), CRC Press, Inc., Boca Raton, FL, pp. 495–521.

    Google Scholar 

  10. Ewing A. G., Chen T.-K., and Chen G. (1995) Voltammetric and Amperometric Probes for Single-Cell Analysis. In: Voltammetric Methods in Brain Systems, (Boulton A., Baker G., and Adams R. N.,eds.), Humana Press, Totowa, NJ, pp. 269–304.

    Chapter  Google Scholar 

  11. Lillard S. J. and Yeung E. S. (1997) Capillary Electrophoresis for the Analysis of Single Cells: Laser-Induced Fluorescence Detection. In: Handbook of Capillary Electrophoresis (Khaledi M. G., ed.), CRC Press, Inc., Boca Raton, FL, pp. 523–544.

    Google Scholar 

  12. Han F., Wang Y., Sims C. E., et al. (2003) Fast electrical lysis of cells for capillary electrophoresis. Anal. Chem. 75, 3688–3696.

    Article  CAS  Google Scholar 

  13. Meredith G. D., Sims C. E., Soughayer J. S., and Allbritton N. L. (2000) Measurement of kinase activation in single mammalian cells. Nature Biotech. 18, 309–312.

    Article  CAS  Google Scholar 

  14. Lee C. L., Linton J., Soughayer J. S., Sims C. E., and Allbritton N. L. (1999) Localized measurement of kinase activation in oocytes of Xenopus laevis. Nat. Biotechnol. 17, 759–762.

    Article  CAS  Google Scholar 

  15. McClain M. A., Culbertson C. T., Jacobson S. C., Allbritton N. L., Sims C. E., and Ramsey J. M. (2003) Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 75, 5646–5655.

    Article  CAS  Google Scholar 

  16. Fu A. Y., Chou H.-P., Spence C., Arnold F. H., and Quake S. R. (2002) An integrated microfabricated cell sorter. Anal. Chem. 74, 2451–2457.

    Article  CAS  Google Scholar 

  17. Fu A. Y., Spence C., Scherer A., Arnold F. H., and Quake S. R. (1999) A microfabricated fluorescence-activated cell sorter. Nature Biotech. 17, 1109–1111.

    Article  CAS  Google Scholar 

  18. McClain M. A., Culbertson C. T., Jacobson S. C., and Ramsey J. M. (2001) Flow cytometry of Escherichia coli on microfluidic devices. Anal. Chem. 73, 5334–5338.

    Article  CAS  Google Scholar 

  19. Roper M. G, Shackman J. G., Dahlgren G. M., and Kennedy R. T. (2003) Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal. Chem. 75, 4711–4717.

    Article  CAS  Google Scholar 

  20. Wheeler A. R., Throndset W. R., Whelan R. J., et al. (2003) Microfluidic device for single-cell analysis. Anal. Chem. 75, 3581–3586.

    Article  CAS  Google Scholar 

  21. Fuhr G. R. and Reichle C. (2000) Living cells in opto-electrical cages. Trends Analyt. Chem. 19, 402–409.

    Article  CAS  Google Scholar 

  22. Yang J., Huang Y., Wang X.-B., Becker F. F., and Gascoyne P. R. C. (1999) Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal. Chem. 71, 911–918.

    Article  CAS  Google Scholar 

  23. Yang M., Li C.-W., and Yang J. (2002) Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal. Chem. 74, 3991–4001.

    Article  CAS  Google Scholar 

  24. Schilling E. A., Kamholz A. E., and Yager P. (2002) Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal. Chem. 74, 1798–1804.

    Article  CAS  Google Scholar 

  25. Muller T., Gradl G., Howitz S., Shirley S., Schnelle T., and Fuhr G. (1999) A 3-D microelectrode system for handling and caging single cells and particles. Biosens. Bioelectron. 14, 247–256.

    Article  CAS  Google Scholar 

  26. Li P. C. H. and Harrison D. J. (1997) Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal. Chem. 69, 1564–1568.

    Article  CAS  Google Scholar 

  27. White F. M. (1991) Viscous Fluid Flow, Second Edition, McGraw-Hill, New York, NY.

    Google Scholar 

  28. Fortina P., Cheng J., Kricka L. J., et al. (2001) DOP-PCR amplification of whole genomic DNA and microchip-based capillary electrophoresis. In: Capillary Electrophoresis of Nucleic Acids, Volume 2, (Mitchelson K. R. and Cheng J.,eds.), Humana Press, Totowa, NJ, pp. 211–219.

    Chapter  Google Scholar 

  29. Jacobson S. C., Hergenröder R., Koutny L. B., Warmack R. J., and Ramsey J. M. (1994) Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices. Anal. Chem. 66, 1107–1113.

    Article  CAS  Google Scholar 

  30. Stjernstrom M. and Roeraade J. (1998) Method for fabrication of icrofluidic systems in glass. J. Micromech. Microeng. 8, 33–38.

    Article  CAS  Google Scholar 

  31. Mets U. and Rigler R. (1994) Submillisecond detection of single rhodamine molecules in water. J. Fluoresc. 4, 259–264.

    Article  CAS  Google Scholar 

  32. Nie S., Chiu D. T., and Zare R. N. (1994) Probing individual molecules with confocal fluorescence microscopy. Science 266, 1018–1021.

    Article  CAS  Google Scholar 

  33. Schrum D. P., Culbertson C. T., Jacobson S. C., and Ramsey J. M. (1999) Microchip flow cytometry using electrokinetic focusing. Anal. Chem. 71, 4173–4177.

    Article  CAS  Google Scholar 

  34. McAteer J. A. and Davis J. (1994) Basic cell culture technique and the maintenance of cell lines. In: Basic Cell Culture (Davis J.,ed.), Oxford University Press, New York, NY, pp. 93–148.

    Google Scholar 

  35. Badal M. Y., Wong M., Chiem N., Salimi-Moosavi H., Harrison D. J. (2000) J. Chromatogr. A 947, 277–286.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Culbertson, C.T. (2006). Single Cell Analysis on Microfluidic Devices. In: Henry, C.S. (eds) Microchip Capillary Electrophoresis. Methods in Molecular Biology, vol 339. Humana Press. https://doi.org/10.1385/1-59745-076-6:203

Download citation

  • DOI: https://doi.org/10.1385/1-59745-076-6:203

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-293-3

  • Online ISBN: 978-1-59745-076-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics