Skip to main content

Measuring Electroosmotic Flow in Microchips and Capillaries

  • Protocol
Microchip Capillary Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 339))

Abstract

Electrophoretic migration and electroosmotic flow (EOF) combine to determine the migration rate of charged compounds in capillary electrophoresis (CE) and microchip capillary electrophoresis (MCE). Uncontrolled and unmeasured changes in EOF will lead to irreproducible peak migration times and poor peak quantitation. The two most common methods for measuring EOF for CE and MCE are detailed. Experimental results for application of the neutral marker method and the current monitoring method to EC are presented, and related calculations of EOF rates and electroosmotic mobility are described. The strengths and shortcomings of these two EOF measurement techniques are discussed. Additional approaches for studying and measuring EOF and for improving the reproducibility of migration times for CE and MCE are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wielgos T., Turner P., and Havel K. (1997) Validation of analytical capillary electrophoresis methods for use in a regulated environment. J. Cap. Elec. 4, 273–278.

    CAS  Google Scholar 

  2. Schaeper J. P. and Sepaniak M. J. (2000) Parameters affecting reproducibility in capillary electrophoresis. Electrophoresis 21, 1421–1429.

    Article  CAS  Google Scholar 

  3. Mayer B. X. (2001) How to increase precision in capillary electrophoresis. J. Chromatogr. A 907, 21–37.

    Article  CAS  Google Scholar 

  4. Guiochon G. (1998) Reflections on analytical separations. Amer. Lab. 30, 14, 15.

    Google Scholar 

  5. Pittman J. L., Henry C. S., and Gilman S. D. (2003) Experimental studies of electroosmotic flow dynamics in microfabricated devices during current monitoring experiments.Anal. Chem. 75, 361–370.

    Article  CAS  Google Scholar 

  6. Pittman J. L., Gessner H. J., Frederick K. A., Raby E. M., Batts J. B., and Gilman S. D. (2003) Experimental studies of electroosmotic flow dynamics during sample stacking for capillary electrophoresis. Anal. Chem. 75, 3531–3538.

    Article  CAS  Google Scholar 

  7. Polson N. A. and Hayes M. A. (2001) Microfluidics controlling fluids in small places. Anal. Chem. 73, 312A–319A.

    Article  CAS  Google Scholar 

  8. Reyes D. R., Iossifidis D., Auroux P.-A., and Manz A. (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74, 2623–2636.

    Article  CAS  Google Scholar 

  9. Auroux P.-A., Iossifidis D., Reyes D. R., and Manz A. (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74, 2637–2652.

    Article  CAS  Google Scholar 

  10. Corradini D. (1997) Buffer additives other than the surfactant sodium dodecyl sulfate for protein separations by capillary electrophoresis. J. Chromatogr. B 699, 221–256. 221-256.

    Article  CAS  Google Scholar 

  11. Rodriguez I. and Li S. F. Y. (1999) Surface deactivation in protein and peptide analysis by capillary electrophoresis. Anal. Chim. Acta 383, 1–26.

    Article  CAS  Google Scholar 

  12. Doherty E. A. S., Meagher R. J., Albarghouthi M. N., and Barron A. E. (2003) Microchannel wall coatings for protein separations by capillary and chip electrophoresis. Electrophoresis 24, 34–54.

    Article  Google Scholar 

  13. Mitchelson K. R. and Cheng J., eds. (2001). Capillary Electrophoresis of Nucleic Acids Volumes I and II. Vol. 162-163. Humana Press, Totowa, NJ.

    Google Scholar 

  14. Terabe S., Otsuka K., Ichikawa K., Tsuchiya A., and Ando T. (1984) Electrokinetic separations with micellar solutions and open-tubular capillaries. Anal. Chem. 56, 111–113.

    Article  CAS  Google Scholar 

  15. Lukacs K. D. and Jorgenson J. W. (1985) Capillary zone electrophoresis: Effect of physical parameters on separation efficiency and quantitation. J. High Res. Chromatogr. Commun. 8, 407–411.

    Article  CAS  Google Scholar 

  16. Huang X., Gordon M. J., and Zare R. N. (1988) Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Anal. Chem. 60, 1837–1838.

    Article  CAS  Google Scholar 

  17. Taylor J. A. and Yeung E. S. (1993) Imaging of hydrodynamic and electrokinetic flow profiles in capillaries. Anal. Chem. 65, 2928–2932.

    Article  CAS  Google Scholar 

  18. Tsuda T., Ikedo M., Jones G., Dadoo R., and Zare R. N. (1993) Observation of flow profiles in electroosmosis in a rectangular capillary. J. Chromatogr. 632, 201–207.

    Article  CAS  Google Scholar 

  19. Harrison D. J., Fluri K., Seiler K., Fan Z., Effenhauser C. S., and Manz A. (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261, 895–897.

    Article  CAS  Google Scholar 

  20. Jacobson S. C., Hergenroder R., Koutny L. B., Warmack R. J., and Ramsey J. M. (1994) Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices. Anal. Chem. 66, 1107–1113.

    Article  CAS  Google Scholar 

  21. Preisler J. and Yeung E. S. (1996) Characterization of nonbonded poly(ethylene oxide) coating for capillary electrophoresis via continuous monitoring of electroosmotic flow. Anal. Chem. 68, 2885–2889.

    Article  CAS  Google Scholar 

  22. Paul P. H., Garguilo M. G., and Rakestraw D. J. (1998) Imaging of pressureand electrokinetically driven flows through open capillaries. Anal. Chem. 70, 2459–2467.

    Article  CAS  Google Scholar 

  23. Herr A. E., Molho J. I., Santiago J. G., Mungal M. G., Kenny T. W., and Garguilo M. G. (2000) Electroosmotic capillary flow with nonuniform zeta potential. Anal. Chem. 72, 1053–1057.

    Article  CAS  Google Scholar 

  24. Barker S. L. R., Ross D., Tarlov M. J., Gaitan M., and Locascio L. E. (2000) Control of flow direction in microfluidic devices with polyelectrolyte multilayers. Anal. Chem. 72, 5925–5929.

    Article  CAS  Google Scholar 

  25. Tallarek, U., Rapp, E., Scheenen, T., Bayer, E., and Van As, H. (2000) Electroosmotic and pressure-driven flow in open and packed capillaries: velocity distributions and fluid dispersion. Anal. Chem. 72, 2292–2301.

    Article  CAS  Google Scholar 

  26. Molho J. I., Herr A. E., Mosier B. P., et al. (2001) Optimization of turn geometries for microchip electrophoresis. Anal. Chem. 73, 1350–1360.

    Article  CAS  Google Scholar 

  27. Altria K. D. and Simpson C. F. (1987) High voltage capillary zone electrophoresis: Operating parameters effects on electroendosmotic flows and electrophoretic mobilities. Chromatographia 24, 527–532.

    Article  CAS  Google Scholar 

  28. Wanders B. J., van de Goor T. A. A. M., and Everaerts F. M. (1993) On-line measurement of electroosmosis in capillary electrophoresis using a conductivity cell. J. Chromatogr. A 652, 291–294.

    Article  CAS  Google Scholar 

  29. Lee T. T., Dadoo R., and Zare R. N. (1994) Real-time measurement of electroosmotic flow in capillary zone electrophoresis. Anal. Chem. 66, 2694–2700.

    Article  CAS  Google Scholar 

  30. St. Claire J. C. and Hayes M. A. (2000) Heat index flow monitoring in capillaries with interferometric backscatter detection. Anal. Chem. 72, 4726–4730.

    Article  CAS  Google Scholar 

  31. Schrum K. F., Lancaster J. M., III, Johnston S. E., and Gilman S. D. (2000) Monitoring electroosmotic flow by periodic photobleaching of a dilute, neutral fluorophore. Anal. Chem. 72, 4317–4321.

    Article  CAS  Google Scholar 

  32. Pittman J. L., Schrum K. F., and Gilman S. D. (2001) On-line monitoring of electroosmotic flow for capillary electrophoretic separations. Analyst 126, 1240–1247.

    Article  CAS  Google Scholar 

  33. Markov D. A. and Bornhop D. J. (2001) Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection. Fresenius J. Anal. Chem. 371, 234–237.

    Article  CAS  Google Scholar 

  34. Chien R.-L. and Burgi D. S. (1992) On-column sample concentration using field amplification in CZE. Anal. Chem. 64, 489A–496A.

    Article  CAS  Google Scholar 

  35. Rose D. J. Jr. and Jorgenson J. W. (1988) Characterization and automation of sample introduction methods for capillary zone electrophoresis. Anal. Chem. 60, 642–648.

    Article  CAS  Google Scholar 

  36. Greenwood P. A. and Greenway G. M. (2002) Sample manipulation in micro total analytical systems. Tr. Anal. Chem. 21, 726–740.

    Article  CAS  Google Scholar 

  37. Jorgenson J. W. and Lukacs K. D. (1981) Zone electrophoresis in open-tubular glass capillaries. Anal. Chem. 53, 1298–1302.

    Google Scholar 

  38. Knox J. H. and McCormack K. A. (1994) Temperature effects in capillary electrophoresis. 1: Internal capillary temperature and effect upon performance. Chromatographia 38, 207–214.

    Article  CAS  Google Scholar 

  39. Lee T. T. and Yeung E. S. (1991) Facilitating data transfer and improving precision in capillary zone electrophoresis with migration indices. Anal. Chem. 63, 2842–2848.

    Article  CAS  Google Scholar 

  40. Jumppanen J. H. and Riekkola M.-L. (1995) Marker techniques for high-accuracy identification in CZE. Anal. Chem. 67, 1060–1066.

    Article  CAS  Google Scholar 

  41. Williams B. A. and Vigh G. (1996) Fast, accurate mobility determination method for capillary electrophoresis. Anal. Chem. 68, 1174–1180.

    Article  CAS  Google Scholar 

  42. Sandoval J. E. and Chen S.-M. (1996) Method for the accelerated measurement of electroosmosis in chemically modified tubes for capillary electrophoresis. Anal. Chem. 68, 2771–2775.

    Article  CAS  Google Scholar 

  43. Ermakov S. V., Capelli L., and Righetti P. G. (1996) Method for measuring very weak, residual electroosmotic flow in coated capillaries. J. Chromatogr. A 744, 55–61.

    Article  CAS  Google Scholar 

  44. Liu Y., Wipf D. O., and Henry C. S. (2001) Conductivity detection for monitoring mixing reactions in microfluidic devices. Analyst 126, 1248–1251.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Gilman, S.D., Chapman, P.J. (2006). Measuring Electroosmotic Flow in Microchips and Capillaries. In: Henry, C.S. (eds) Microchip Capillary Electrophoresis. Methods in Molecular Biology, vol 339. Humana Press. https://doi.org/10.1385/1-59745-076-6:187

Download citation

  • DOI: https://doi.org/10.1385/1-59745-076-6:187

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-293-3

  • Online ISBN: 978-1-59745-076-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics