Surface Modification Methods for Enhanced Device Efficacy and Function

  • Barbara J. Jones
  • Mark A. Hayes
Part of the Methods in Molecular Biology book series (MIMB, volume 339)


Currently available microfluidic devices can accomplish a variety of tasks useful in molecular biology. When moving analytical processes to a microenvironment, the properties of the device surface play a larger role in the functioning of the device. Surface modification may become necessary or advantageous for the purpose of control of the functional mechanics of the device, keeping cell components from adsorbing, attaching antibodies to the surface for detection of biological components, and attaching a functional bonding complex. Modification of the surface of microfluidic devices for the control of flow and device function, or for funtionalization of the surface to tailor the device to a specific use, can be accomplished in numerous bench-top, postfabrication procedures. The use of polyelectrolyte multilayers, ultraviolet grafting of polymers, and polydimethylsiloxane/surfactant coating to control flow and mitigate adsorption is discussed. In addition, the funtionalization of devices through amine termination of surfaces, and immobilization of biotin within a phosphotidylcholine bilayer is detailed.

Key Words

Surface modification biotinylation microfluidics polyelectrolyte multilayer 


  1. 1.
    Badal, M. Y., Wong, M., Chiem, N., Salimi-Moosavi, H., and Harrison, D. J. (2002) Protein separation and surfactant control of electroosmotic flow in poly(dimethylsiloxane)-coated capillaries and microchips. J. Chromatogr. A 947, 277–286.CrossRefGoogle Scholar
  2. 2.
    Barker, S. L. R., Tarlov, M. J., Canavan, H., Hickman, J. J., and Locascio, L. E. (2000) Plastic microfluidic devices modified with polyelectrolyte multilayers. Anal. Chem. 72, 4899–4903.CrossRefGoogle Scholar
  3. 3.
    Gottschlich, N., Jacobson, S. C., Culbertson, C. T., and Ramsey, J. M. (2001) Twodimensional electrochromatography/capillary electrophoresis on a microchip. Anal. Chem. 73, 2669–2674.CrossRefGoogle Scholar
  4. 4.
    Henry, A. C., Tutt T. J., Galloway, M., et al. (2000) Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices. Anal. Chem. 72, 5331–5337.CrossRefGoogle Scholar
  5. 5.
    Hu, S. W., Ren, X. Q., Bachman, M., Sims, C. E., Li, G. P., and Allbritton, N. (2002) Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Anal. Chem. 74, 4117–4123.CrossRefGoogle Scholar
  6. 6.
    Katayama, H., Ishihama, Y., and Asakawa, N. (1998) Stable cationic capillary coating with successive multiple ionic polymer layers for capillary electrophoresis. Anal. Chem. 70, 5272–5277.CrossRefGoogle Scholar
  7. 7.
    Liu, Y., Fanguy, J. C., Bledsoe, J. M., and Henry, C. S. (2000) Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips. Anal. Chem. 72, 5939–5944.CrossRefGoogle Scholar
  8. 8.
    Eteshola, E. and Leckband, D. (2001) Development and characterization of an ELISA assay in PDMS microfluidic channels. Sens. Actuators B Chem. 72, 129–133.CrossRefGoogle Scholar
  9. 9.
    Mao, H. B., Yang, T. L., and Cremer, P. S. (2002) Design and characterization of immobilized enzymes in microfluidic systems. Anal. Chem. 74, 379–385.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Barbara J. Jones
    • 1
  • Mark A. Hayes
    • 2
  1. 1.Analytical Chemistry DivisionNational Institute of Standards and TechnologyGaithersburg
  2. 2.Department of ChemistryArizona State UniversityTempe

Personalised recommendations