Measuring Electroosmotic Flow in Microchips and Capillaries

  • S. Douglass Gilman
  • Peter J. Chapman
Part of the Methods in Molecular Biology book series (MIMB, volume 339)


Electrophoretic migration and electroosmotic flow (EOF) combine to determine the migration rate of charged compounds in capillary electrophoresis (CE) and microchip capillary electrophoresis (MCE). Uncontrolled and unmeasured changes in EOF will lead to irreproducible peak migration times and poor peak quantitation. The two most common methods for measuring EOF for CE and MCE are detailed. Experimental results for application of the neutral marker method and the current monitoring method to EC are presented, and related calculations of EOF rates and electroosmotic mobility are described. The strengths and shortcomings of these two EOF measurement techniques are discussed. Additional approaches for studying and measuring EOF and for improving the reproducibility of migration times for CE and MCE are summarized.

Key Words

Electroosmotic flow microchip capillary electrophoresis capillary electrophoresis neutral marker current monitoring 


  1. 1.
    Wielgos T., Turner P., and Havel K. (1997) Validation of analytical capillary electrophoresis methods for use in a regulated environment. J. Cap. Elec. 4, 273–278.Google Scholar
  2. 2.
    Schaeper J. P. and Sepaniak M. J. (2000) Parameters affecting reproducibility in capillary electrophoresis. Electrophoresis 21, 1421–1429.CrossRefGoogle Scholar
  3. 3.
    Mayer B. X. (2001) How to increase precision in capillary electrophoresis. J. Chromatogr. A 907, 21–37.CrossRefGoogle Scholar
  4. 4.
    Guiochon G. (1998) Reflections on analytical separations. Amer. Lab. 30, 14, 15.Google Scholar
  5. 5.
    Pittman J. L., Henry C. S., and Gilman S. D. (2003) Experimental studies of electroosmotic flow dynamics in microfabricated devices during current monitoring experiments.Anal. Chem. 75, 361–370.CrossRefGoogle Scholar
  6. 6.
    Pittman J. L., Gessner H. J., Frederick K. A., Raby E. M., Batts J. B., and Gilman S. D. (2003) Experimental studies of electroosmotic flow dynamics during sample stacking for capillary electrophoresis. Anal. Chem. 75, 3531–3538.CrossRefGoogle Scholar
  7. 7.
    Polson N. A. and Hayes M. A. (2001) Microfluidics controlling fluids in small places. Anal. Chem. 73, 312A–319A.CrossRefGoogle Scholar
  8. 8.
    Reyes D. R., Iossifidis D., Auroux P.-A., and Manz A. (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74, 2623–2636.CrossRefGoogle Scholar
  9. 9.
    Auroux P.-A., Iossifidis D., Reyes D. R., and Manz A. (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74, 2637–2652.CrossRefGoogle Scholar
  10. 10.
    Corradini D. (1997) Buffer additives other than the surfactant sodium dodecyl sulfate for protein separations by capillary electrophoresis. J. Chromatogr. B 699, 221–256. 221-256.CrossRefGoogle Scholar
  11. 11.
    Rodriguez I. and Li S. F. Y. (1999) Surface deactivation in protein and peptide analysis by capillary electrophoresis. Anal. Chim. Acta 383, 1–26.CrossRefGoogle Scholar
  12. 12.
    Doherty E. A. S., Meagher R. J., Albarghouthi M. N., and Barron A. E. (2003) Microchannel wall coatings for protein separations by capillary and chip electrophoresis. Electrophoresis 24, 34–54.CrossRefGoogle Scholar
  13. 13.
    Mitchelson K. R. and Cheng J., eds. (2001). Capillary Electrophoresis of Nucleic Acids Volumes I and II. Vol. 162-163. Humana Press, Totowa, NJ.Google Scholar
  14. 14.
    Terabe S., Otsuka K., Ichikawa K., Tsuchiya A., and Ando T. (1984) Electrokinetic separations with micellar solutions and open-tubular capillaries. Anal. Chem. 56, 111–113.CrossRefGoogle Scholar
  15. 15.
    Lukacs K. D. and Jorgenson J. W. (1985) Capillary zone electrophoresis: Effect of physical parameters on separation efficiency and quantitation. J. High Res. Chromatogr. Commun. 8, 407–411.CrossRefGoogle Scholar
  16. 16.
    Huang X., Gordon M. J., and Zare R. N. (1988) Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Anal. Chem. 60, 1837–1838.CrossRefGoogle Scholar
  17. 17.
    Taylor J. A. and Yeung E. S. (1993) Imaging of hydrodynamic and electrokinetic flow profiles in capillaries. Anal. Chem. 65, 2928–2932.CrossRefGoogle Scholar
  18. 18.
    Tsuda T., Ikedo M., Jones G., Dadoo R., and Zare R. N. (1993) Observation of flow profiles in electroosmosis in a rectangular capillary. J. Chromatogr. 632, 201–207.CrossRefGoogle Scholar
  19. 19.
    Harrison D. J., Fluri K., Seiler K., Fan Z., Effenhauser C. S., and Manz A. (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261, 895–897.CrossRefGoogle Scholar
  20. 20.
    Jacobson S. C., Hergenroder R., Koutny L. B., Warmack R. J., and Ramsey J. M. (1994) Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices. Anal. Chem. 66, 1107–1113.CrossRefGoogle Scholar
  21. 21.
    Preisler J. and Yeung E. S. (1996) Characterization of nonbonded poly(ethylene oxide) coating for capillary electrophoresis via continuous monitoring of electroosmotic flow. Anal. Chem. 68, 2885–2889.CrossRefGoogle Scholar
  22. 22.
    Paul P. H., Garguilo M. G., and Rakestraw D. J. (1998) Imaging of pressureand electrokinetically driven flows through open capillaries. Anal. Chem. 70, 2459–2467.CrossRefGoogle Scholar
  23. 23.
    Herr A. E., Molho J. I., Santiago J. G., Mungal M. G., Kenny T. W., and Garguilo M. G. (2000) Electroosmotic capillary flow with nonuniform zeta potential. Anal. Chem. 72, 1053–1057.CrossRefGoogle Scholar
  24. 24.
    Barker S. L. R., Ross D., Tarlov M. J., Gaitan M., and Locascio L. E. (2000) Control of flow direction in microfluidic devices with polyelectrolyte multilayers. Anal. Chem. 72, 5925–5929.CrossRefGoogle Scholar
  25. 25.
    Tallarek, U., Rapp, E., Scheenen, T., Bayer, E., and Van As, H. (2000) Electroosmotic and pressure-driven flow in open and packed capillaries: velocity distributions and fluid dispersion. Anal. Chem. 72, 2292–2301.CrossRefGoogle Scholar
  26. 26.
    Molho J. I., Herr A. E., Mosier B. P., et al. (2001) Optimization of turn geometries for microchip electrophoresis. Anal. Chem. 73, 1350–1360.CrossRefGoogle Scholar
  27. 27.
    Altria K. D. and Simpson C. F. (1987) High voltage capillary zone electrophoresis: Operating parameters effects on electroendosmotic flows and electrophoretic mobilities. Chromatographia 24, 527–532.CrossRefGoogle Scholar
  28. 28.
    Wanders B. J., van de Goor T. A. A. M., and Everaerts F. M. (1993) On-line measurement of electroosmosis in capillary electrophoresis using a conductivity cell. J. Chromatogr. A 652, 291–294.CrossRefGoogle Scholar
  29. 29.
    Lee T. T., Dadoo R., and Zare R. N. (1994) Real-time measurement of electroosmotic flow in capillary zone electrophoresis. Anal. Chem. 66, 2694–2700.CrossRefGoogle Scholar
  30. 30.
    St. Claire J. C. and Hayes M. A. (2000) Heat index flow monitoring in capillaries with interferometric backscatter detection. Anal. Chem. 72, 4726–4730.CrossRefGoogle Scholar
  31. 31.
    Schrum K. F., Lancaster J. M., III, Johnston S. E., and Gilman S. D. (2000) Monitoring electroosmotic flow by periodic photobleaching of a dilute, neutral fluorophore. Anal. Chem. 72, 4317–4321.CrossRefGoogle Scholar
  32. 32.
    Pittman J. L., Schrum K. F., and Gilman S. D. (2001) On-line monitoring of electroosmotic flow for capillary electrophoretic separations. Analyst 126, 1240–1247.CrossRefGoogle Scholar
  33. 33.
    Markov D. A. and Bornhop D. J. (2001) Nanoliter-scale non-invasive flow-rate quantification using micro-interferometric back-scatter and phase detection. Fresenius J. Anal. Chem. 371, 234–237.CrossRefGoogle Scholar
  34. 34.
    Chien R.-L. and Burgi D. S. (1992) On-column sample concentration using field amplification in CZE. Anal. Chem. 64, 489A–496A.CrossRefGoogle Scholar
  35. 35.
    Rose D. J. Jr. and Jorgenson J. W. (1988) Characterization and automation of sample introduction methods for capillary zone electrophoresis. Anal. Chem. 60, 642–648.CrossRefGoogle Scholar
  36. 36.
    Greenwood P. A. and Greenway G. M. (2002) Sample manipulation in micro total analytical systems. Tr. Anal. Chem. 21, 726–740.CrossRefGoogle Scholar
  37. 37.
    Jorgenson J. W. and Lukacs K. D. (1981) Zone electrophoresis in open-tubular glass capillaries. Anal. Chem. 53, 1298–1302.Google Scholar
  38. 38.
    Knox J. H. and McCormack K. A. (1994) Temperature effects in capillary electrophoresis. 1: Internal capillary temperature and effect upon performance. Chromatographia 38, 207–214.CrossRefGoogle Scholar
  39. 39.
    Lee T. T. and Yeung E. S. (1991) Facilitating data transfer and improving precision in capillary zone electrophoresis with migration indices. Anal. Chem. 63, 2842–2848.CrossRefGoogle Scholar
  40. 40.
    Jumppanen J. H. and Riekkola M.-L. (1995) Marker techniques for high-accuracy identification in CZE. Anal. Chem. 67, 1060–1066.CrossRefGoogle Scholar
  41. 41.
    Williams B. A. and Vigh G. (1996) Fast, accurate mobility determination method for capillary electrophoresis. Anal. Chem. 68, 1174–1180.CrossRefGoogle Scholar
  42. 42.
    Sandoval J. E. and Chen S.-M. (1996) Method for the accelerated measurement of electroosmosis in chemically modified tubes for capillary electrophoresis. Anal. Chem. 68, 2771–2775.CrossRefGoogle Scholar
  43. 43.
    Ermakov S. V., Capelli L., and Righetti P. G. (1996) Method for measuring very weak, residual electroosmotic flow in coated capillaries. J. Chromatogr. A 744, 55–61.CrossRefGoogle Scholar
  44. 44.
    Liu Y., Wipf D. O., and Henry C. S. (2001) Conductivity detection for monitoring mixing reactions in microfluidic devices. Analyst 126, 1248–1251.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • S. Douglass Gilman
    • 1
  • Peter J. Chapman
    • 2
  1. 1.Department of ChemistryLouisiana State UniversityBaton Rouge
  2. 2.Department of ChemistryUniversity of TennesseeKnoxville

Personalised recommendations