Skip to main content

Detecting RNA/DNA Hybridization Using Double-Labeled Donor Probes With Enhanced Fluorescence Resonance Energy Transfer Signals

  • Protocol
  • 2293 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 335))

Abstract

Fluorescence resonance energy transfer (FRET) occurs when two fluorophores are in close proximity, and the emission energy of a donor fluorophore is transferred to excite an acceptor fluorophore. Using such fluorescently labeled oligonucleotides as FRET probes, makes possible specific detection of RNA molecules even if similar sequences are present in the environment. A higher ratio of signal to background fluorescence is required for more sensitive probe detection. We found that double-labeled donor probes labeled with BODIPY dye resulted in a remarkable increase in fluorescence intensity compared to single-labeled donor probes used in conventional FRET. Application of this double-labeled donor system can improve a variety of FRET techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Clegg, R. M. (1996) Fluorescence resonance energy transfer, in Fluorescence Imaging Spectroscopy and Microscopy, (Wang X. F. and Herman B. eds.), Wiley-Interscience Publication, New York, NY, pp. 179–252.

    Google Scholar 

  2. Herman, B. (1989) Resonance engergy transfer microscopy, in Fluorescence Microscopy of Living Cells in Culture (Taylor D. L. and Wang Y.-L. eds.), Academic Press, San Diego, CA, pp. 219–243.

    Chapter  Google Scholar 

  3. Cardullo, R. A., Agrawal, S., Flores, C., Zamecnik, P. C., and Wolf, D. E. (1988) Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 85, 8790–8794.

    Article  PubMed  CAS  Google Scholar 

  4. Morrison, L. E., Halder, T. C., and Stols, L. M. (1989) Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization. Anal. Biochem. 183, 231–244.

    Article  PubMed  CAS  Google Scholar 

  5. Mergny, J. L., Boutorine, A. S., Garestier, T., et al. (1994) Fluorescence energy transfer as a probe for nucleic acid structures and sequences. Nucleic Acids Res. 22, 920–928.

    Article  PubMed  CAS  Google Scholar 

  6. Sokol, D. L., Zhang, X., Lu, P., and Gewirtz, A. M. (1998) Real time detection of DNA.RNA hybridization in living cells. Proc. Natl. Acad. Sci. USA 95, 11,538–11,543.

    Article  PubMed  CAS  Google Scholar 

  7. Matsuo, T. (1998) In situ visualization of messenger RNA for basic fibroblast growth factor in living cells. Biochim. Biophys. Acta 1379, 178–184.

    PubMed  CAS  Google Scholar 

  8. Sixou, S., SzokaJr, F. C., Green, G. A., Giusti, B., Zon, G., and Chin, D. J. (1994) Intracellular oligonucleotide hybridization detected by fluorescence resonance energy transfer (FRET). Nucleic Acids Res. 22, 662–668.

    Article  PubMed  CAS  Google Scholar 

  9. Okamura, Y., Kondo, S., Sase, I., et al. (2000) Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization. Nucleic Acids Res. 28, e107.

    Article  PubMed  CAS  Google Scholar 

  10. Okamura, Y., Kondo, S., Suga, T., et al. (2003) Visualization of viral RNA localization in a living tobacco protoplast by in vivo hybridization. Submitted.

    Google Scholar 

  11. Lawson, T. G., Ray, B. K., Dodds, J. T., et al. (1986) Influence of 5′ proximal secondary structure on the translational efficiency of eukaryotic mRNAs and on their interaction with initiation factors. J. Biol. Chem. 261, 13,979–13,989.

    PubMed  CAS  Google Scholar 

  12. Ota, N., Hirano, K., Warashina, M., et al. (1998) Determination of interactions between structured nucleic acids by fluorescence resonance energy transfer (FRET): selection of target sites for functional nucleic acids. Nucleic Acids Res. 26, 735–743.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Okamura, Y., Watanabe, Y. (2006). Detecting RNA/DNA Hybridization Using Double-Labeled Donor Probes With Enhanced Fluorescence Resonance Energy Transfer Signals. In: Didenko, V.V. (eds) Fluorescent Energy Transfer Nucleic Acid Probes. Methods in Molecular Biology™, vol 335. Humana Press. https://doi.org/10.1385/1-59745-069-3:43

Download citation

  • DOI: https://doi.org/10.1385/1-59745-069-3:43

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-380-0

  • Online ISBN: 978-1-59745-069-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics