Skip to main content

Multi-Fluorophore Fluorescence Resonance Energy Transfer for Probing Nucleic Acids Structure and Folding

  • Protocol
Fluorescent Energy Transfer Nucleic Acid Probes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 335))

Abstract

Fluorescence resonance energy transfer (FRET) is a widely used technique to study the structure and dynamics of nucleic acids in solution. Such a technique often uses only one donor fluorophore and one acceptor fluorophore to probe the distance and its changes between the two labeled sites. To fully understand molecules with complicated structures, such as three- or four-way DNA junctions, several dual-fluorophore experiments have to be performed. Here, we describe an emerging alternative technique using multifluorophore FRET, in which simultaneous labeling of one molecule with several different fluorophores is performed to acquire all the distance information in a single experiment. This method decreases the number of experiments necessary to perform and increases the consistency of the results. In this chapter, FRET study of a tri-fluorophore-labeled DNAzyme serves as an example to illustrate the design of multi-fluorophore FRET experiments and the related data processing and analysis. The (ratio)A method used to calculate FRET efficiency in dual-fluorophore systems is extended to multi-fluorophore systems. An important difference between dual- and multi-fluorophore systems is that, when a multi-fluorophore system is used, FRET efficiency is no longer a reliable parameter to assess folding. Instead, fluorophore-to-fluorophore distance should be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stryer, L. (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846.

    Article  PubMed  CAS  Google Scholar 

  2. Clegg, R. M. (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388.

    Article  PubMed  CAS  Google Scholar 

  3. Lilley, D. M. J. and Wilson, T. J. (2000) Fluorescence resonance energy transfer as a structural tool for nucleic acids. Curr. Opin. Chem. Biol. 4, 507–517.

    Article  PubMed  CAS  Google Scholar 

  4. Tong, A. K., Li, Z., Jones, G. S., Russo, J. J., and Ju, J. (2001) Combinatorial fluorescence energy transfer tags for multiplex biological assays Nat. Biotech. 19, 756–759.

    Article  CAS  Google Scholar 

  5. Tong, A. K., Jockusch, S., Li, Z., et al. (2001) Triple fluorescence energy transfer in covalently trichromophore-labeled DNA. J. Am. Chem. Soc. 123, 12,923–12,924.

    Article  PubMed  CAS  Google Scholar 

  6. Liu, J. and Lu, Y. (2002) FRET study of a trifluorophore-labeled DNAzyme. J. Am. Chem. Soc. 124, 15,208–15,216.

    Article  PubMed  CAS  Google Scholar 

  7. Watrob, H. M., Pan, C.-P., and Barkley, M. D. (2003) Two-step FRET as a structural tool. J. Am. Chem. Soc. 125, 7336–7343.

    Article  PubMed  CAS  Google Scholar 

  8. Haustein, E., Jahnz, M., and Schwille, P. (2003) Triple FRET: A tool for studying long-range molecular interactions. Chem. Phys. Chem. 4, 745–748.

    PubMed  CAS  Google Scholar 

  9. Klostermeier, D., Sears, P., Wong, C.-H., Millar, D. P., and Williamson, J. R. (2004) A three-fluorophore FRET assay for high-throughput screening of smallmolecule inhibitors of ribosome assembly. Nucleic Acids Res. 32, 2707–2715.

    Article  PubMed  CAS  Google Scholar 

  10. Hohng, S., Joo, C., and Ha, T. (2004) Single-molecule three-color FRET. Biophys. J. 87, 1328–1337.

    Article  PubMed  CAS  Google Scholar 

  11. Galperin, E., Verkhusha, V. V., and Sorkin, A. (2004) Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells. Nature Methods 1, 209–217.

    Article  PubMed  CAS  Google Scholar 

  12. Faulhammer, D. and Famulok, M. (1996) The Ca2+ ion as a cofactor for a novel RNA-cleaving deoxyribozyme. Angew. Chem. Int. Ed. 35, 2837–2841.

    Article  CAS  Google Scholar 

  13. Santoro, S. W. and Joyce, G. F. (1997) A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 94, 4262–4266.

    Article  PubMed  CAS  Google Scholar 

  14. Li, J., Zheng, W., Kwon, A. H., and Lu, Y. (2000) In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res. 28, 481–488.

    Article  PubMed  CAS  Google Scholar 

  15. Lakowicz, J. R. (1999) Principles of Fluorescence Spectroscopy, 2nd ed, Kluwer Academic/Plenum, New York.

    Google Scholar 

  16. Nowakowski, J., Shim, P. J., Prasad, G. S., Stout, C. D., and Joyce, G. F. (1999) Crystal structure of an 82-nucleotide RNA-DNA complex formed by the 10-23 DNA enzyme. Nat. Struct. Biol. 6, 151–156.

    Article  PubMed  CAS  Google Scholar 

  17. van der Meer, B. W. (2002) Kappa-squared: from nuisance to new sense. Rev. Mol. Biotechnol. 82, 181–196.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Liu, J., Lu, Y. (2006). Multi-Fluorophore Fluorescence Resonance Energy Transfer for Probing Nucleic Acids Structure and Folding. In: Didenko, V.V. (eds) Fluorescent Energy Transfer Nucleic Acid Probes. Methods in Molecular Biology™, vol 335. Humana Press. https://doi.org/10.1385/1-59745-069-3:257

Download citation

  • DOI: https://doi.org/10.1385/1-59745-069-3:257

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-380-0

  • Online ISBN: 978-1-59745-069-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics