Skip to main content

Real-Time Detection and Quantification of Telomerase Activity Utilizing Energy Transfer Primers

  • Protocol
Fluorescent Energy Transfer Nucleic Acid Probes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 335))

Abstract

A novel closed-tube format telomeric repeat amplification protocol specifically adapted to real-time detection and quantification of telomerase activity was developed. The assay utilizes energy transfer primers, which emit fluorescence only upon incorporation into polymerase chain reaction (PCR) amplification products. The assay, performed on a real-time detection instrument, is highly reproducible, sensitive, and specific. Telomerase activity in as few as 10 cultured cells can be quantified with a linear dynamic range more than 2.5 logs. In addition, the presence of potential PCR inhibitor(s) is readily detectable by inclusion of an internal PCR control labeled with a second color fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blackburn, E. H. (1991) Structure and function of telomeres. Nature 350, 569–563.

    Article  PubMed  CAS  Google Scholar 

  2. Zakitan, V. A. (1989) Structure and function of telomeres. Ann. Rev. Genet. 23, 579–604.

    Article  Google Scholar 

  3. Watson, J. D. (1972) Origin of concatemeric T7 DNA. Nature New Biol. 239, 197–201.

    Article  PubMed  CAS  Google Scholar 

  4. Olovnikov, A. M. (1973) A theory of marginotomy: the incomplete copying template margin in enzymic synthesis of pronucleotides and biological significance of the phenomenon. J. Theor. Biol. 41, 181–190.

    Article  PubMed  CAS  Google Scholar 

  5. Greider, C. W. and Blackburn, E. H. (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeats synthesis. Nature 337, 331–337.

    Article  PubMed  CAS  Google Scholar 

  6. Morin, G. B. (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59, 521–529.

    Article  PubMed  CAS  Google Scholar 

  7. Kim, N. W., Piatyszek, M. A., Prowse, K. R., et al. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2014.

    Article  PubMed  CAS  Google Scholar 

  8. Shay, J. W. and Bacchetti, S. (1997) A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791.

    Article  PubMed  CAS  Google Scholar 

  9. Bodnar, A. G., Ouellette, M., Frolkis, M., et al. (1998) Extension of life-span by introduction of telomerase into normal human cell. Science 279, 349–352.

    Article  PubMed  CAS  Google Scholar 

  10. Bacchetti, S. and Counter, C. M. (1995) Telomeres and telomerase in human cancer. Int. J. Oncology 7, 423–432

    CAS  Google Scholar 

  11. Counter, C. M., Avilion, A. A., LeFeuvre, C. E., et al. (1992) Telomerase shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929.

    PubMed  CAS  Google Scholar 

  12. Nazarenko, I. A., Bhatnagar, S., and Hohman, R. J. (1997) A closed tube format for amplification and detection of DNA based energy transfer. Nucleic Acids Res. 25, 2516–2521.

    Article  PubMed  CAS  Google Scholar 

  13. Uehara, H., Nardone, G., Nazarenko, I. A., and Hohman, R. J. (1999) Detection of telomerase activity utilizing energy transfer primer: comparison with gel-and ELISA-based detection. Biotechniques 26, 552–558.

    PubMed  CAS  Google Scholar 

  14. Myakishev, M., Khripin, Y., Hu, S., and Hamer, D. (2001) High throughput SNP genotyping by allele-specific PCR with universal energy transfer-labeled primers. Genome Res. 1, 163–169.

    Article  Google Scholar 

  15. Stryer, L. (1978) Fluorescence energy transfer as a spectroscopic ruler. Ann. Rev. Biochem. 47, 819–846.

    Article  PubMed  CAS  Google Scholar 

  16. Wu, P. and Brand, L. (1994) Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Uehara, H. (2006). Real-Time Detection and Quantification of Telomerase Activity Utilizing Energy Transfer Primers. In: Didenko, V.V. (eds) Fluorescent Energy Transfer Nucleic Acid Probes. Methods in Molecular Biology™, vol 335. Humana Press. https://doi.org/10.1385/1-59745-069-3:157

Download citation

  • DOI: https://doi.org/10.1385/1-59745-069-3:157

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-380-0

  • Online ISBN: 978-1-59745-069-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics