Crosstalk Coregulation Mechanisms of G Protein- Coupled Receptors and Receptor Tyrosine Kinases

  • Kanchana Natarajan
  • Bradford C. Berk
Part of the Methods in Molecular Biology™ book series (MIMB, volume 332)


G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) are transmembrane receptors that initiate intracellular signaling cascades in response to a diverse array of ligands. Recent studies have shown that signal transduction initiated by GPCRs and RTKs is not organized in distinct signaling cassettes where receptor activation leads to cell division and gene transcription in a linear manner. In fact, signal integration and diversification arises from a complex network involving crosscommunication between separate signaling units. Several different styles of crosstalk between GPCR- and RTKinitiated pathways exist, with GPCRs or components of GPCR-induced pathways being either upstream or downstream of RTKs. Activation of GPCRs sometimes results in a phenomenon known as “transactivation” of RTKs, which leads to the recruitment of scaffold proteins, such as Shc, Grb2, and Sos in addition to mitogen-activated protein kinase activation. In other cases, RTKs use different components of GPCR-mediated signaling, such as â-arrestin, G protein-receptor kinases, and regulator of G protein signaling to integrate signaling pathways. This chapter outlines some of the more common mechanisms used by both GPCRs and RTKs to initiate intracellular crosstalk, thereby creating a complex signaling network that is important to normal development.

Key Words

G protein-coupled receptor growth factor receptor crosstalk transactivation MAPK 


  1. 1.
    Bunemann M. and Hosey M. M. (1999) G-protein coupled receptor kinases as modulators of G-protein signalling. J. Physiol. 517, 5–23.PubMedGoogle Scholar
  2. 2.
    McCormick F. (1993) Signal transduction. How receptors turn Ras on. Nature 363, 15–16.PubMedGoogle Scholar
  3. 3.
    Pierce K. L., Luttrell L. M., and Lefkowitz R. J. (2001) New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20, 1532–1539.PubMedGoogle Scholar
  4. 4.
    Waters C., Pyne S., and Pyne N. J. (2004) The role of G-protein coupled receptors and associated proteins in receptor tyrosine kinase signal transduction. Semin. Cell Dev. Biol. 15, 309–323.PubMedGoogle Scholar
  5. 5.
    Lowes V. L., Ip N. Y., and Wong Y. H. (2002) Integration of signals from receptor tyrosine kinases and g protein-coupled receptors. Neurosignals 11, 5–19.PubMedGoogle Scholar
  6. 6.
    Winitz S., Russell M., Qian N. X., Gardner A., Dwyer L., and Johnson G. L. (1993) Involvement of Ras and Raf in the Gi-coupled acetylcholine muscarinic m2 receptor activation of mitogen-activated protein (MAP) kinase kinase and MAP kinase. J. Biol. Chem. 268, 19,196–19,199.PubMedGoogle Scholar
  7. 7.
    van Biesen T., Hawes B. E., Luttrell D. K., et al. (1995) Receptor-tyrosinekinase-and G beta gamma-mediated MAP kinase activation by a common signalling pathway. Nature 376, 781–784.PubMedGoogle Scholar
  8. 8.
    Chen Y., Grall D., Salcini A. E., Pelicci P. G., Pouyssegur J., and Van Obberghen-Schilling E. (1996) Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor. Embo J. 15, 1037–1044.PubMedGoogle Scholar
  9. 9.
    Bouvier M. (2001) Oligomerization of G-protein-coupled transmitter receptors. Nat. Rev. Neurosci. 2, 274–286.PubMedGoogle Scholar
  10. 10.
    Angers S., Salahpour A., Joly E., et al. (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET) Proc. Natl. Acad. Sci. USA 97, 3684–3689.PubMedGoogle Scholar
  11. 11.
    Jones K. A., Borowsky B., Tamm J. A., et al. (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396, 674–679.PubMedGoogle Scholar
  12. 12.
    Luttrell L. M., Della Rocca G. J., van Biesen T., Luttrell D. K., and Lefkowitz R. J. (1997) Gbetagamma subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J. Biol. Chem. 272, 4637–4644.PubMedGoogle Scholar
  13. 13.
    Daub H., Weiss F. U., Wallasch C., and Ullrich A. (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379, 557–560.PubMedGoogle Scholar
  14. 14.
    Gelband C. H., Zhu M., Lu D., et al. (1997) Functional interactions between neuronal AT1 and AT2 receptors. Endocrinology 138, 2195–2198.PubMedGoogle Scholar
  15. 15.
    Tanaka M., Tsuchida S., Imai T., et al. (1999) Vascular response to angiotensin II is exaggerated through an upregulation of AT1 receptor in AT2 knockout mice. Biochem. Biophys. Res. Commun. 258, 194–198.Google Scholar
  16. 16.
    Cui T., Nakagami H., Iwai M., et al. (2001) Pivotal role of tyrosine phosphatase SHP-1 in AT2 receptor-mediated apoptosis in rat fetal vascular smooth muscle cell. Cardiovasc. Res. 49, 863–871.PubMedGoogle Scholar
  17. 17.
    Sano M., Fukuda K., Sato T., et al. (2001) ERK and p38 MAPK, but not NFkappaB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts. Circ. Res. 89, 661–669.PubMedGoogle Scholar
  18. 18.
    Kim H. E., Dalal S. S., Young E., Legato M. J., Weisfeldt M. L., and D’Armiento J. (2000) Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J. Clin. Invest. 106, 857–866.PubMedGoogle Scholar
  19. 19.
    Booz G. W., Day J. N., and Baker K. M. (2002) Interplay between the cardiac renin angiotensin system and JAK-STAT signaling: role in cardiac hypertrophy, ischemia/reperfusion dysfunction, and heart failure. J. Mol. Cell Cardiol. 34, 1443–1453.PubMedGoogle Scholar
  20. 20.
    Ushio-Fukai M., Hilenski L., Santanam N., et al. (2001) Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. J. Biol. Chem. 276, 48.Google Scholar
  21. 21.
    Eguchi S., and Inagami T. (2000) Signal transduction of angiotensin II type 1 receptor through receptor tyrosine kinase. Regul. Pept. 91, 13–20.PubMedGoogle Scholar
  22. 22.
    Saito Y., and Berk B. C. (2001) Transactivation: a novel signaling pathway from angiotensin II to tyrosine kinase receptors. J. Mol. Cell Cardiol. 33, 3–7.PubMedGoogle Scholar
  23. 23.
    Eguchi S., Dempsey P. J., Frank G. D., Motley E. D., and Inagami T. (2001) Activation of MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPK but not for JNK. J. Biol. Chem. 276, 7957–7962.PubMedGoogle Scholar
  24. 24.
    Eguchi S., Numaguchi K., Iwasaki H., et al. (1998) Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J. Biol. Chem. 273, 8890–8896.PubMedGoogle Scholar
  25. 25.
    Voisin L., Foisy S., Giasson E., Lambert C., Moreau P., and Meloche S. (2002) EGF receptor transactivation is obligatory for protein synthesis stimulation by G protein-coupled receptors. Am. J. Physiol. Cell Physiol. 283, C446–C455.PubMedGoogle Scholar
  26. 26.
    Shah B. H., and Catt K. J. (2002) Calcium-independent activation of extracellularly regulated kinases 1 and 2 by angiotensin II in hepatic C9 cells: roles of protein kinase Cdelta, Src/proline-rich tyrosine kinase 2, and epidermal growth receptor trans-activation. Mol. Pharmacol. 61, 343–351.PubMedGoogle Scholar
  27. 27.
    Murasawa S., Mori Y., Nozawa Y., et al. (1998) Angiotensin II type 1 receptorinduced extracellular signal-regulated protein kinase activation is mediated by Ca2+/calmodulin-dependent transactivation of epidermal growth factor receptor. Circ. Res. 82, 1338–1348.PubMedGoogle Scholar
  28. 28.
    Wang D., Yu X., Cohen R. A., and Brecher P. (2000) Distinct effects of Nacetylcysteine and nitric oxide on angiotensin II-induced epidermal growth factor receptor phosphorylation and intracellular Ca(2+) levels. J. Biol. Chem. 275, 12,223–12,230.PubMedGoogle Scholar
  29. 29.
    Konishi A. and Berk B. C. (2003) Epidermal growth factor receptor transactivation is regulated by glucose in vascular smooth muscle cells. J. Biol. Chem. 278, 35,049–35,056.PubMedGoogle Scholar
  30. 30.
    Ishida M., Ishida T., Thomas S. M., and Berk B. C. (1998) Activation of extracellular signal-regulated kinases (ERK1/2) by angiotensin II is dependent on c-Src in vascular smooth muscle cells. Circ. Res. 82, 7–12.PubMedGoogle Scholar
  31. 31.
    Sadoshima J. and Izumo S. (1996) The heterotrimeric G q protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes. Embo J. 15, 775–787.PubMedGoogle Scholar
  32. 32.
    Suarez C., Diaz-Torga G., Gonzalez-Iglesias A., et al. (2003) Angiotensin II phosphorylation of extracellular signal-regulated kinases in rat anterior pituitary cells. Am. J. Physiol. Endocrinol. Metab. 285, E645–E653.PubMedGoogle Scholar
  33. 33.
    Li X., Lee J. W., Graves L. M., and Earp H. S. (1998) Angiotensin II stimulates ERK via two pathways in epithelial cells: protein kinase C suppresses a G-protein coupled receptor-EGF receptor transactivation pathway. EMBO J. 17, 2574–2583.PubMedGoogle Scholar
  34. 34.
    Eguchi S., Iwasaki H., Ueno H., et al. (1999) Intracellular signaling of angiotensin II-induced p70 S6 kinase phosphorylation at Ser(411) in vascular smooth muscle cells. Possible requirement of epidermal growth factor receptor, βRas, extracellular signal-regulated kinase, and Akt. J. Biol. Chem. 274, 36,843–36,851.PubMedGoogle Scholar
  35. 35.
    Keely S. J., Calandrella S. O., and Barrett K. E. (2000) Carbachol-stimulated transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T(84) cells is mediated by intracellular ca(2+), PYK-2, and p60(src) J. Biol. Chem. 275, 12,619–12,625.PubMedGoogle Scholar
  36. 36.
    Soltoff S. P. (1998) Related adhesion focal tyrosine kinase and the epidermal growth factor receptor mediate the stimulation of mitogen-activated protein kinase by the G-protein-coupled P2Y2 receptor. Phorbol ester or [Ca2+]i elevation can substitute for receptor activation. J. Biol. Chem. 273, 23.Google Scholar
  37. 37.
    Eguchi S., Iwasaki H., Inagami T., et al. (1999) Involvement of PYK2 in angiotensin II signaling of vascular smooth muscle cells. Hypertension 33, 201–206.PubMedGoogle Scholar
  38. 38.
    Luttrell L. M., Ferguson S. S., Daaka Y., et al. (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661.PubMedGoogle Scholar
  39. 39.
    Kodama H., Fukuda K., Pan J., et al. (1998) Biphasic activation of the JAK/ STAT pathway by angiotensin II in rat cardiomyocytes. Circ. Res. 82, 244–250.PubMedGoogle Scholar
  40. 40.
    Marrero M. B., Schieffer B., Li B., Sun J., Harp J. B., and Ling B. N. (1997) Role of Janus kinase/signal transducer and activator of transcription and mitogenactivated protein kinase cascades in angiotensin II-and platelet-derived growth factor-induced vascular smooth muscle cell proliferati. J. Biol. Chem. 272, 24,684–24,690.PubMedGoogle Scholar
  41. 41.
    Marrero M. B., Schieffer B., Paxton W. G., et al. (1995) Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375, 247–250.PubMedGoogle Scholar
  42. 42.
    Yamauchi T., Ueki K., Tobe K., et al. (1997) Tyrosine phosphorylation of the EGF receptor by the kinase Jak2 is induced by growth hormone. Nature 390, 91–96.PubMedGoogle Scholar
  43. 43.
    Berry C., Hamilton C. A., Brosnan M. J., et al. (2000) Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxideproduction in human internal mammary arteries. Circulation 101, 2206–2212.PubMedGoogle Scholar
  44. 44.
    Touyz R. M. and Schiffrin E. L. (1999) Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 34, 976–982.PubMedGoogle Scholar
  45. 45.
    Frank G. D., Eguchi S., Inagami T., and Motley E. D. (2001) N-acetylcysteine inhibits angiotensin ii-mediated activation of extracellular signal-regulated kinase and epidermal growth factor receptor. Biochem. Biophys. Res. Commun. 280, 1116–1119.PubMedGoogle Scholar
  46. 46.
    Griendling K. K., Sorescu D., and Ushio-Fukai M. (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ. Res. 86, 494–501.PubMedGoogle Scholar
  47. 47.
    Ushio-Fukai M., Griendling K. K., Becker P. L., Hilenski L., Halleran S., and Alexander R. W. (2001) Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 21, 489–495.PubMedGoogle Scholar
  48. 48.
    Rao G. N. (1996) Hydrogen peroxide induces complex formation of SHC-Grb2-SOS with receptor tyrosine kinase and activates Ras and extracellular signal-regulated protein kinases group of mitogen-activated protein kinases. Oncogene 13, 713–719.PubMedGoogle Scholar
  49. 49.
    Touyz R. M., Cruzado M., Tabet F., Yao G., Salomon S., and Schiffrin E. L. (2003) Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Can. J. Physiol. Pharmacol. 81, 159–167.PubMedGoogle Scholar
  50. 50.
    Seta K. and Sadoshima J. (2003) Phosphorylation of tyrosine 319 of the angiotensin II type 1 receptor mediates angiotensin II-induced trans-activation of the epidermal growth factor receptor. J. Biol. Chem. 278, 9019–9026.PubMedGoogle Scholar
  51. 51.
    Prenzel N., Zwick E., Daub H., et al. (1999) EGF receptor transactivation by Gprotein coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888.PubMedGoogle Scholar
  52. 52.
    Saito S., Frank G. D., Motley E. D., et al. (2002) Metalloprotease inhibitor blocks angiotensin II-induced migration through inhibition of epidermal growth factor receptor transactivation. Biochem. Biophys. Res. Commun. 294, 1023–1029.PubMedGoogle Scholar
  53. 53.
    Rouet-Benzineb P., Gontero B., Dreyfus P., and Lafuma C. (2000) Angiotensin II induces nuclear factor-kappa B activation in cultured neonatal rat cardiomyocytes through protein kinase C signaling pathway. J. Mol. Cell Cardiol. 32, 1767–1778.PubMedGoogle Scholar
  54. 54.
    Suzuki M., Raab G., Moses M. A., Fernandez C. A., and Klagsbrun M. (1997) Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J. Biol. Chem. 272, 31,730–31,737.PubMedGoogle Scholar
  55. 55.
    Asakura M., Kitakaze M., Takashima S., et al. (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat. Med. 8, 35–40.PubMedGoogle Scholar
  56. 56.
    Hao L., Du M., Lopez-Campistrous A., and Fernandez-Patron C. (2004) Agonist-induced activation of matrix metalloproteinase-7 promotes vasoconstriction through the epidermal growth factor-receptor pathway. Circ. Res. 94, 68–76.PubMedGoogle Scholar
  57. 57.
    Frank G. D., Mifune M., Inagami T., et al. (2003) Distinct mechanisms of receptor and nonreceptor tyrosine kinase activation by reactive oxygen species in vascular smooth muscle cells: role of metalloprotease and protein kinase C-delta. Mol. Cell Biol. 23, 1581–1589.PubMedGoogle Scholar
  58. 58.
    Lin J. and Freeman M. R. (2003) Transactivation of ErbB1 and ErbB2 receptors by angiotensin II in normal human prostate stromal cells. Prostate 54, 1–7.PubMedGoogle Scholar
  59. 59.
    Heeneman S., Haendeler J., Saito Y., Ishida M., and Berk B. C. (2000) Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein Shc. J. Biol. Chem. 275, 15,926–15,932.PubMedGoogle Scholar
  60. 60.
    Linseman D. A., Benjamin C. W., and Jones D. A. (1995) Convergence of angiotensin II and platelet-derived growth factor receptor signaling cascades in vascular smooth muscle cells. J. Biol. Chem. 270, 12,563–12,568.PubMedGoogle Scholar
  61. 61.
    Abe J., Deguchi J., Matsumoto T., et al. (1997) Stimulated activation of platelet-derived growth factor receptor in vivo in balloon-injured arteries: a link between angiotensin II and intimal thickening. Circulation 96, 1906–1913.PubMedGoogle Scholar
  62. 62.
    Mondorf U. F., Geiger H., Herrero M., Zeuzem S., and Piiper A. (2000) Involvement of the platelet-derived growth factor receptor in angiotensin II-induced activation of extracellular regulated kinases 1 and 2 in human mesangial cells. FEBS Lett 472, 129–132.PubMedGoogle Scholar
  63. 63.
    Conway A. M., Rakhit S., Pyne S., and Pyne N. J. (1999) Platelet-derivedgrowth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive G-proteins, c-Srctyrosine kinases and phosphoinositide 3-kinase. Biochem. J. 337, 171–177.PubMedGoogle Scholar
  64. 64.
    Li X., Ponten A., Aase K., et al. (2000) PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat. Cell Biol. 2, 302–309.PubMedGoogle Scholar
  65. 65.
    Du J., Sperling L. S., Marrero M. B., Phillips L., and Delafontaine P. (1996) G-protein and tyrosine kinase receptor cross-talk in rat aortic smooth muscle cells: thrombin-and angiotensin II-induced tyrosine phosphorylation of insulin receptor substrate-1 and insulin-like growth factor 1 receptor. Biochem. Biophys. Res. Commun. 218, 934–939.PubMedGoogle Scholar
  66. 66.
    Zahradka P., Litchie B., Storie B., and Helwer G. (2004) Transactivation of the insulin-like growth factor-I receptor by angiotensin II mediates downstream signaling from the angiotensin II type 1 receptor to phosphatidylinositol 3-kinase. Endocrinology 145, 2978–2987.PubMedGoogle Scholar
  67. 67.
    Velloso L. A., Folli F., Sun X. J., White M. F., Saad M. J., and Kahn C. R. (1996) Cross-talk between the insulin and angiotensin signaling systems. Proc. Natl. Acad. Sci. USA 93, 12,490–12,495.PubMedGoogle Scholar
  68. 68.
    Folli F., Kahn C. R., Hansen H., Bouchie J. L., and Feener E. P. (1997) Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk. J. Clin. Invest. 100, 2158–2169.PubMedGoogle Scholar
  69. 69.
    Jalink K., Hordijk P. L., and Moolenaar W. H. (1994) Growth factor-like effects of lysophosphatidic acid, a novel lipid mediator. Biochim. Biophys. Acta. 1198, 185–196.PubMedGoogle Scholar
  70. 70.
    Kranenburg O. and Moolenaar W. H. (2001) Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene 20, 1540–1546.PubMedGoogle Scholar
  71. 71.
    Fukushima N. and Chun J. (2001) The LPA receptors. Prostaglandins Other Lipid Mediat. 64, 21–32.PubMedGoogle Scholar
  72. 72.
    Dikic I., Tokiwa G., Lev S., Courtneidge S. A., and Schlessinger J. (1996) A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383, 547–550.PubMedGoogle Scholar
  73. 73.
    Chen Y. H., Pouyssegur J., Courtneidge S. A., and Van Obberghen-Schilling E. (1994) Activation of Src family kinase activity by the G protein-coupled thrombin receptor in growth-responsive fibroblasts. J. Biol. Chem. 269, 27,372–27,377.PubMedGoogle Scholar
  74. 74.
    Daub H., Wallasch C., Lankenau A., Herrlich A., and Ullrich A. (1997) Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 16, 7032–7044.PubMedGoogle Scholar
  75. 75.
    Cunnick J. M., Dorsey J. F., Munoz-Antonia T., Mei L., and Wu J. (2000) Requirement of SHP2 binding to Grb2-associated binder-1 for mitogen-activated protein kinase activation in response to lysophosphatidic acid and epidermal growth factor. J. Biol. Chem. 275, 13,842–13,848.PubMedGoogle Scholar
  76. 76.
    Sekharam M., Cunnick J. M., and Wu J. (2000) Involvement of lipoxygenase in lysophosphatidic acid-stimulated hydrogen peroxide release in human HaCaT keratinocytes. Biochem. J. 346 Pt 3, 751–758.PubMedGoogle Scholar
  77. 77.
    Chen Q., Olashaw N., and Wu J. (1995) Participation of reactive oxygen species in the lysophosphatidic acid-stimulated mitogen-activated protein kinase kinase activation pathway. J. Biol. Chem. 270, 28,499–28,502.PubMedGoogle Scholar
  78. 78.
    Bae Y. S., Kang S. W., Seo M. S., et al. (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217–221.PubMedGoogle Scholar
  79. 79.
    Cunnick J. M., Dorsey J. F., Standley T., et al. (1998) Role of tyrosine kinase activity of epidermal growth factor receptor in the lysophosphatidic acid-stimulated mitogen-activated protein kinase pathway. J. Biol. Chem. 273, 14,468–14,475.PubMedGoogle Scholar
  80. 80.
    Hirota K., Murata M., Itoh T., Yodoi J., and Fukuda K. (2001) An endogenous redox molecule, thioredoxin, regulates transactivation of epidermal growth factor receptor and activation of NF-kappaB by lysophosphatidic acid. FEBS Lett. 489, 134–138.PubMedGoogle Scholar
  81. 81.
    Hirata M., Umata T., Takahashi T., et al. (2001) Identification of serum factor inducing ectodomain shedding of proHB-EGF and studies of noncleavable mutants of proHB-EGF. Biochem. Biophys. Res. Commun. 283, 915–922.PubMedGoogle Scholar
  82. 82.
    Umata T., Hirata M., Takahashi T., et al. (2001) A dual signaling cascade that regulates the ectodomain shedding of heparin-binding epidermal growth factorlike growth factor. J. Biol. Chem. 276, 30,475–30,482.PubMedGoogle Scholar
  83. 83.
    Liu Z. and Armant D. R. (2004) Lysophosphatidic acid regulates murine blastocyst development by transactivation of receptors for heparin-binding EGF-like growth factor. Exp. Cell Res. 296, 317–326.PubMedGoogle Scholar
  84. 84.
    Moughal N. A., Waters C., Sambi B., Pyne S., and Pyne N. J. (2004) Nerve growth factor signaling involves interaction between the Trk A receptor and lysophosphatidate receptor 1 systems: nuclear translocation of the lysophosphatidate receptor 1 and Trk A receptors in pheochromocytoma 12 cells. Cell Signal 16, 127–136.PubMedGoogle Scholar
  85. 85.
    Wang L., Cummings R., Zhao Y., et al. (2003) Involvement of phospholipase D2 in lysophosphatidate-induced transactivation of platelet-derived growth factor receptor-beta in human bronchial epithelial cells. J. Biol. Chem. 278, 39,931–39,940.PubMedGoogle Scholar
  86. 86.
    Casas-Gonzalez P., Ruiz-Martinez A., and Garcia-Sainz J. A. (2003) Lysophosphatidic acid induces alpha1B-adrenergic receptor phosphorylation through G beta gamma, phosphoinositide 3-kinase, protein kinase C and epidermal growth factor receptor transactivation. Biochim. Biophys. Acta. 1633, 75–83.PubMedGoogle Scholar
  87. 87.
    Mickley E. J., Gray G. A., and Webb D. J. (1997) Activation of endothelin ETA receptors masks the constrictor role of endothelin ETB receptors in rat isolated small mesenteric arteries. Br. J. Pharmacol. 120, 1376–1382.PubMedGoogle Scholar
  88. 88.
    Iwasaki H., Eguchi S., Marumo F., and Hirata Y. (1998) Endothelin-1 stimulates DNA synthesis of vascular smooth-muscle cells through transactivation of epidermal growth factor receptor. J. Cardiovasc. Pharmacol. 31(Suppl 1), S182–S184.PubMedGoogle Scholar
  89. 89.
    Iwasaki H., Eguchi S., Ueno H., Marumo F., and Hirata Y. (1999) Endothelinmediated vascular growth requires p42/p44 mitogen-activated protein kinase and p70 S6 kinase cascades via transactivation of epidermal growth factor receptor. Endocrinology 140, 4659–4668.PubMedGoogle Scholar
  90. 90.
    Hua H., Munk S., and Whiteside C. I. (2003) Endothelin-1 activates mesangial cell ERK1/2 via EGF-receptor transactivation and caveolin-1 interaction. Am. J. Physiol. Renal. Physiol. 284, F303–F312.PubMedGoogle Scholar
  91. 91.
    Sihvola R. K., Pulkkinen V. P., Koskinen P. K., and Lemstrom K. B. (2002) Crosstalk of endothelin-1 and platelet-derived growth factor in cardiac allograft arteriosclerosis. J. Am. Coll. Cardiol. 39, 710–717.PubMedGoogle Scholar
  92. 92.
    Chu L., Takahashi R., Norota I., et al. (2003) Signal transduction and Ca2+ signaling in contractile regulation induced by crosstalk between endothelin-1 and norepinephrine in dog ventricular myocardium. Circ. Res. 92, 1024–1032.PubMedGoogle Scholar
  93. 93.
    Garcia-Sainz J. A., Vazquez-Prado J., and del Carmen Medina L. (2000) Alpha 1-adrenoceptors: function and phosphorylation. Eur. J. Pharmacol. 389, 1–12.PubMedGoogle Scholar
  94. 94.
    Vazquez-Prado J., Medina L. C., and Garcia-Sainz J. A. (1997) Activation of endothelin ETA receptors induces phosphorylation of alpha1b-adrenoreceptors in Rat-1 fibroblasts. J. Biol. Chem. 272, 27,330–27,337.PubMedGoogle Scholar
  95. 95.
    Blaukat A., Barac A., Cross M. J., Offermanns S., and Dikic I. (2000) G proteincoupled receptor-mediated mitogen-activated protein kinase activation through cooperation of Galpha(q) and Galpha(i) signals. Mol. Cell Biol. 20, 6837–6848.PubMedGoogle Scholar
  96. 96.
    Hanke S., Nurnberg B., Groll D. H., and Liebmann C. (2001) Cross talk between beta-adrenergic and bradykinin B(2) receptors results in cooperative regulation of cyclic AMP accumulation and mitogen-activated protein kinase activity. Mol. Cell Biol. 21, 8452–8460.PubMedGoogle Scholar
  97. 97.
    Medina L. C., Vazquez-Prado J., Torres-Padilla M. E., Mendoza-Mendoza A., Cruz Munoz M. E., and Garcia-Sainz J. A. (1998) Crosstalk: phosphorylation of alpha1b-adrenoceptors induced through activation of bradykinin B2 receptors. FEBS Lett. 422, 141–145.PubMedGoogle Scholar
  98. 98.
    Czubayko U. and Reiser G. (1996) Desensitization of P2U receptor in neuronal cell line. Different control by the agonists ATP and UTP, as demonstrated by single-cell Ca2+ responses. Biochem. J. 320, 215–219.PubMedGoogle Scholar
  99. 99.
    Quitterer U. and Lohse M. J. (1999) Crosstalk between Galpha(i)-and Galpha(q)-coupled receptors is mediated by Gbetagamma exchange. Proc. Natl. Acad. Sci. USA 96, 10,626–10,631.PubMedGoogle Scholar
  100. 100.
    Schindelholz B. and Reber B. F. (1997) Bradykinin-induced collapse of rat pheochromocytoma (PC12) cell growth cones: a role for tyrosine kinase activity. J. Neurosci. 17, 8391–8401.PubMedGoogle Scholar
  101. 101.
    Thuringer D., Maulon L., and Frelin C. (2002) Rapid transactivation of the vascular endothelial growth factor receptor KDR/Flk-1 by the bradykinin B2 receptor contributes to endothelial nitric-oxide synthase activation in cardiac capillary endothelial cells. J. Biol. Chem. 277, 2028–2032.PubMedGoogle Scholar
  102. 102.
    Miura S., Matsuo Y., and Saku K. (2003) Transactivation of KDR/Flk-1 by the B2 receptor induces tube formation in human coronary endothelial cells. Hypertension 41, 1118–1123.PubMedGoogle Scholar
  103. 103.
    Barki-Harrington L. and Daaka Y. (2001) Bradykinin induced mitogenesis of androgen independent prostate cancer cells. J. Urol. 165, 2121–2125.PubMedGoogle Scholar
  104. 104.
    Grewal J. S., Luttrell L. M., and Raymond J. R. (2001) G protein-coupled receptors desensitize and down-regulate epidermal growth factor receptors in renal mesangial cells. J. Biol. Chem. 276, 27,335–27,344.PubMedGoogle Scholar
  105. 105.
    Adomeit A., Graness A., Gross S., Seedorf K., Wetzker R., and Liebmann C. (1999) Bradykinin B(2) receptor-mediated mitogen-activated protein kinase activation in COS-7 cells requires dual signaling via both protein kinase C pathway and epidermal growth factor receptor transactivation. Mol. Cell Biol. 19, 5289–5297.PubMedGoogle Scholar
  106. 106.
    Mukhin Y. V., Garnovsky E. A., Ullian M. E., and Garnovskaya M. N. (2003) Bradykinin B2 receptor activates extracellular signal-regulated protein kinase in mIMCD-3 cells via epidermal growth factor receptor transactivation. J. Pharmacol. Exp. Ther. 304, 968–977.PubMedGoogle Scholar
  107. 107.
    Zwick E., Wallasch C., Daub H., and Ullrich A. (1999) Distinct calcium-dependent pathways of epidermal growth factor receptor transactivation and PYK2 tyrosine phosphorylation in PC12 cells. J. Biol. Chem. 274, 20,989–20,996.PubMedGoogle Scholar
  108. 108.
    Zwick E., Daub H., Aoki N., et al. (1997) Critical role of calcium-dependent epidermal growth factor receptor transactivation in PC12 cell membrane depolarization and bradykinin signaling. J. Biol. Chem. 272, 24,767–24,770.PubMedGoogle Scholar
  109. 109.
    Graness A., Hanke S., Boehmer F. D., Presek P., and Liebmann C. (2000) Protein-tyrosine-phosphatase-mediated epidermal growth factor (EGF) receptor transinactivation and EGF receptor-independent stimulation of mitogen-activated protein kinase by bradykinin in A431 cells. Biochem. J. 347, 441–447.PubMedGoogle Scholar
  110. 110.
    Endo A., Nagashima K., Kurose H., Mochizuki S., Matsuda M., and Mochizuki N. (2002) Sphingosine 1-phosphate induces membrane ruffling and increases motility of human umbilical vein endothelial cells via vascular endothelial growth factor receptor and CrkII. J. Biol. Chem. 277, 23,747–23,754.PubMedGoogle Scholar
  111. 111.
    Tanimoto T., Jin Z. G., and Berk B. C. (2002) Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS) J. Biol. Chem. 277, 42,997–43,001.PubMedGoogle Scholar
  112. 112.
    Baudhuin L. M., Jiang Y., Zaslavsky A., Ishii I., Chun J., and Xu Y. (2004) S1P3-mediated Akt activation and cross-talk with platelet-derived growth factor receptor (PDGFR) Faseb. J. 18, 341–343.PubMedGoogle Scholar
  113. 113.
    Kim J. H., Song W. K., and Chun J. S. (2000) Sphingosine 1-phosphate activates Erk-1/-2 by transactivating epidermal growth factor receptor in rat-2 cells. IUBMB Life 50, 119–124.PubMedGoogle Scholar
  114. 114.
    Chan A. K., Kalmes A., Hawkins S., Daum G., and Clowes A. W. (2003) Blockade of the epidermal growth factor receptor decreases intimal hyperplasia in balloon-injured rat carotid artery. J. Vasc. Surg. 37, 644–649.PubMedGoogle Scholar
  115. 115.
    Bobe R., Yin X., Roussanne M. C., et al. (2003) Evidence for ERK1/2 activation by thrombin that is independent of EGFR transactivation. Am. J. Physiol. 285, H745–H754.Google Scholar
  116. 116.
    Sabri A., Guo J., Elouardighi H., Darrow A. L., Andrade-Gordon P., and Steinberg S. F. (2003) Mechanisms of protease-activated receptor-4 actions in cardiomyocytes. Role of Src tyrosine kinase. J. Biol. Chem. 278, 11,714–11,720.PubMedGoogle Scholar
  117. 117.
    Sabri A., Short J., Guo J., and Steinberg S. F. (2002) Protease-activated receptor-1-mediated DNA synthesis in cardiac fibroblast is via epidermal growth factor receptor transactivation: distinct PAR-1 signaling pathways in cardiac fibroblasts and cardiomyocytes. Circ. Res. 91, 532–539.PubMedGoogle Scholar
  118. 118.
    Tokunou T., Ichiki T., Takeda K., Funakoshi Y., Iino N., and Takeshita A. (2001) cAMP response element-binding protein mediates thrombin-induced proliferation of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol 21, 1764–1769.PubMedGoogle Scholar
  119. 119.
    Kanda Y., Mizuno K., Kuroki Y., and Watanabe Y. (2001) Thrombin-induced p38 mitogen-activated protein kinase activation is mediated by epidermal growth factor receptor transactivation pathway. Br. J. Pharmacol. 132, 1657–1664.PubMedGoogle Scholar
  120. 120.
    Rauch B. H., Millette E., Kenagy R. D., Daum G., and Clowes A. W. (2004) Thrombin-and factor Xa-induced DNA synthesis is mediated by transactivation of fibroblast growth factor receptor-1 in human vascular smooth muscle cells. Circ. Res. 94, 340–345.PubMedGoogle Scholar
  121. 121.
    Rao G. N., Delafontaine P., and Runge M. S. (1995) Thrombin stimulates phosphorylation of insulin-like growth factor-1 receptor, insulin receptor substrate-1, and phospholipase C-gamma 1 in rat aortic smooth muscle cells. J. Biol. Chem. 270, 27,871–27,875.PubMedGoogle Scholar
  122. 122.
    Majesky M. W., Daemen M. J., and Schwartz S. M. (1990) Alpha 1-adrenergic stimulation of platelet-derived growth factor A-chain gene expression in rat aorta. J. Biol. Chem. 265, 1082–1088.PubMedGoogle Scholar
  123. 123.
    Piiper A., Stryjek-Kaminska D., Klengel R., and Zeuzem S. (1997) Epidermal growth factor inhibits bombesin-induced activation of phospholipase C-beta1 in rat pancreatic acinar cells. Gastroenterology 113, 1747–1755.PubMedGoogle Scholar
  124. 124.
    Melien O., Sandnes D., Johansen E. J., and Christoffersen T. (2000) Effects of pertussis toxin on extracellular signal-regulated kinase activation in hepatocytes by hormones and receptor-independent agents: evidence suggesting a stimulatory role of G(i) proteins at a level distal to receptor coupling. J. Cell Physiol. 184, 27–36.PubMedGoogle Scholar
  125. 125.
    Zhang B. H., Ho V., and Farrell G. C. (2001) Specific involvement of G(alphai2) with epidermal growth factor receptor signaling in rat hepatocytes, and the inhibitory effect of chronic ethanol. Biochem. Pharmacol. 61, 1021–1027.PubMedGoogle Scholar
  126. 126.
    Poppleton H., Sun H., Fulgham D., Bertics P., and Patel T. B. (1996) Activation of Gsalpha by the epidermal growth factor receptor involves phosphorylation. J. Biol. Chem. 271, 6947–6951.PubMedGoogle Scholar
  127. 127.
    Sun H., Chen Z., Poppleton H., et al. (1997) The juxtamembrane, cytosolic region of the epidermal growth factor receptor is involved in association with alpha-subunit of Gs. J. Biol. Chem. 272, 5413–5420.PubMedGoogle Scholar
  128. 128.
    Nair B. G. and Patel T. B. (1993) Regulation of cardiac adenylyl cyclase by epidermal growth factor (EGF) Role of EGF receptor protein tyrosine kinase activity. Biochem. Pharmacol. 46, 1239–1245.PubMedGoogle Scholar
  129. 129.
    Maudsley S., Pierce K. L., Zamah A. M., et al. (2000) The beta(2)-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J. Biol. Chem. 275, 9572–9580.PubMedGoogle Scholar
  130. 130.
    Kim J., Ahn S., Guo R., and Daaka Y. (2003) Regulation of epidermal growth factor receptor internalization by G protein-coupled receptors. Biochemistry 42, 2887–2894.PubMedGoogle Scholar
  131. 131.
    Derrien A., Zheng B., Osterhout J. L., et al. (2003) Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability. J. Biol. Chem. 278, 16,107–16,116.PubMedGoogle Scholar
  132. 132.
    Wan K. F., Sambi B. S., Frame M., Tate R., and Pyne N. J. (2001) The inhibitory gamma subunit of the type 6 retinal cyclic guanosine monophosphate phosphodiesterase is a novel intermediate regulating p42/p44 mitogen-activated protein kinase signaling in human embryonic kidney 293 cells. J. Biol. Chem. 276, 37,802–37,808.PubMedGoogle Scholar
  133. 133.
    Rosenfeldt H. M., Hobson J. P., Maceyka M., et al. (2001) EDG-1 links the PDGF receptor to Src and focal adhesion kinase activation leading to lamellipodia formation and cell migration. FASEB J. 15, 2649–2659.PubMedGoogle Scholar
  134. 134.
    Freedman N. J., Kim L. K., Murray J. P., et al. (2002) Phosphorylation of the platelet-derived growth factor receptor-beta and epidermal growth factor receptor by G protein-coupled receptor kinase-2. Mechanisms for selectivity of desensitization. J. Biol. Chem. 277, 48,261–48,269.PubMedGoogle Scholar
  135. 135.
    Kreuzer J., Viedt C., Brandes R. P., et al. (2003) Platelet-derived growth factor activates production of reactive oxygen species by NAD(P)H oxidase in smooth muscle cells through Gi1,2. FASEB J. 17, 38–40.PubMedGoogle Scholar
  136. 136.
    Hobson J. P., Rosenfeldt H. M., Barak L. S., et al. (2001) Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 291, 1800–1803.PubMedGoogle Scholar
  137. 137.
    Alderton F., Rakhit S., Kong K. C., et al. (2001) Tethering of the plateletderived growth factor beta receptor to G-protein-coupled receptors. A novel platform for integrative signaling by these receptor classes in mammalian cells. J. Biol. Chem. 276, 28,578–28,585.PubMedGoogle Scholar
  138. 138.
    Cho H., Harrison K., Schwartz O., and Kehrl J. H. (2003) The aorta and heart differentially express RGS (regulators of G-protein signalling) proteins that selectively regulate sphingosine 1-phosphate, angiotensin II and endothelin-1 signalling. Biochem. J. 371, 973–980.PubMedGoogle Scholar
  139. 139.
    Rakhit S., Pyne S., and Pyne N. J. (2001) Nerve growth factor stimulation of p42/p44 mitogen-activated protein kinase in PC12 cells: role of G(i/o), G protein-coupled receptor kinase 2, beta-arrestin I, and endocytic processing. Mol. Pharmacol. 60, 63–70.PubMedGoogle Scholar
  140. 140.
    Lou X., Yano H., Lee F., Chao M. V., and Farquhar M. G. (2001) GIPC and GAIP form a complex with TrkA: a putative link between G protein and receptor tyrosine kinase pathways. Mol. Biol. Cell 12, 615–627.PubMedGoogle Scholar
  141. 141.
    Fedorov Y. V., Jones N. C., and Olwin B. B. (1998) Regulation of myogenesis by fibroblast growth factors requires beta-gamma subunits of pertussis toxinsensitive G proteins. Mol. Cell Biol. 18, 5780–5787.PubMedGoogle Scholar
  142. 142.
    Xu C. B., Zhang Y., Stenman E., and Edvinsson L. (2002) D-erythro-N, Ndimethylsphingosine inhibits bFGF-induced proliferation of cerebral, aortic and coronary smooth muscle cells. Atherosclerosis 164, 237–243.PubMedGoogle Scholar
  143. 143.
    Krieger-Brauer H. I., Medda P., and Kather H. (2000) Basic fibroblast growth factor utilizes both types of component subunits of Gs for dual signaling in humanadipocytes. Stimulation of adenylyl cyclase via Galph(s) and inhibition of NADPH oxidase by Gbeta gamma(s). J. Biol. Chem. 275, 35,920–35,925.PubMedGoogle Scholar
  144. 144.
    Ferrara N. (1996) Vascular endothelial growth factor. Eur. J. Cancer 32A, 2413–2422.PubMedGoogle Scholar
  145. 145.
    Risau W. (1997) Mechanisms of angiogenesis. Nature 386, 671–674.PubMedGoogle Scholar
  146. 146.
    Petrova T. V., Makinen T., and Alitalo K. (1999) Signaling via vascular endothelial growth factor receptors. Exp. Cell Res. 253, 117–130.PubMedGoogle Scholar
  147. 147.
    Neufeld G., Cohen T., Gengrinovitch S., and Poltorak Z. (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22.PubMedGoogle Scholar
  148. 148.
    Migdal M., Huppertz B., Tessler S., et al. (1998) Neuropilin-1 is a placenta growth factor-2 receptor. J. Biol. Chem. 273, 22,272–22,278.PubMedGoogle Scholar
  149. 149.
    Makinen T., Olofsson B., Karpanen T., et al. (1999) Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. J. Biol. Chem. 274, 21,217–21,222.PubMedGoogle Scholar
  150. 150.
    Soker S., Takashima S., Miao H. Q., Neufeld G., and Klagsbrun M. (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745.PubMedGoogle Scholar
  151. 151.
    Cohen T., Gitay-Goren H., Sharon R., et al. (1995) VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells. J. Biol. Chem. 270, 11,322–11,326.PubMedGoogle Scholar
  152. 152.
    Zeng H., Zhao D., and Mukhopadhyay D. (2002) KDR stimulates endothelial cell migration through heterotrimeric G protein Gq/11-mediated activation of a small GTPase RhoA. J. Biol. Chem. 277, 46,791–46,798.PubMedGoogle Scholar
  153. 153.
    Zeng H., Zhao D., Yang S., Datta K., and Mukhopadhyay D. (2003) Heterotrimeric G alpha q/G alpha 11 proteins function upstream of vascular endothelial growth factor (VEGF) receptor-2 (KDR) phosphorylation in vascular permeability factor/VEGF signaling. J. Biol. Chem. 278, 20,738–20,745.PubMedGoogle Scholar
  154. 154.
    Zeng H., Zhao D., and Mukhopadhyay D. (2002) Flt-1-mediated down-regulation of endothelial cell proliferation through pertussis toxin-sensitive G proteins, beta gamma subunits, small GTPase CDC42, and partly by Rac-1. J. Biol. Chem. 277, 4003–4009.PubMedGoogle Scholar
  155. 155.
    Imamura T., Vollenweider P., Egawa K., et al. (1999) G alpha-q/11 protein plays a key role in insulin-induced glucose transport in 3T3-L1 adipocytes. Mol. Cell Biol. 19, 6765–6774.PubMedGoogle Scholar
  156. 156.
    Sanchez-Margalet V., Gonzalez-Yanes C., Santos-Alvarez J., and Najib S. (1999) Insulin activates G alpha IL-2 protein in rat hepatoma (HTC) cell membranes. Cell Mol. Life Sci. 55, 142–147.PubMedGoogle Scholar
  157. 157.
    Profrock A., Schnefel S., and Schulz I. (1991) Receptors for insulin interact with Gi-proteins and for epidermal growth factor with Gi-and Gs-proteins in rat pancreatic acinar cells. Biochem. Biophys. Res. Commun. 175, 380–386.PubMedGoogle Scholar
  158. 158.
    Kuemmerle J. F. and Murthy K. S. (2001) Coupling of the insulin-like growth factor-I receptor tyrosine kinase to Gi2 in human intestinal smooth muscle: Gbetagamma-dependent mitogen-activated protein kinase activation and growth. J. Biol. Chem. 276, 7187–7194.PubMedGoogle Scholar
  159. 159.
    Hallak H., Seiler A. E., Green J. S., Ross B. N., and Rubin R. (2000) Association of heterotrimeric G(i) with the insulin-like growth factor-I receptor. Release of G(betagamma) subunits upon receptor activation. J. Biol. Chem. 275, 2255–2258.PubMedGoogle Scholar
  160. 160.
    Liu P., and Anderson R. G. (1999) Spatial organization of EGF receptor transmodulation by PDGF. Biochem. Biophys. Res. Commun. 261, 695–700.PubMedGoogle Scholar
  161. 161.
    Habib A. A., Hognason T., Ren J., Stefansson K., and Ratan R. R. (1998) The epidermal growth factor receptor associates with and recruits phosphatidylinositol 3-kinase to the platelet-derived growth factor beta receptor. J. Biol. Chem. 273, 6885–6891.PubMedGoogle Scholar
  162. 162.
    Bagowski C. P., Stein-Gerlach M., Choidas A., and Ullrich A. (1999) Celltype specific phosphorylation of threonines T654 and T669 by PKD defines the signal capacity of the EGF receptor. EMBO J. 18, 5567–5576.PubMedGoogle Scholar
  163. 163.
    Tartare S., Ballotti R., and Van Obberghen E. (1991) Interaction between heterologous receptor tyrosine kinases. Hormone-stimulated insulin receptors activate unoccupied IGF-I receptors. FEBS Lett. 295, 219–222.PubMedGoogle Scholar
  164. 164.
    Roudabush F. L., Pierce K. L., Maudsley S., Khan K. D., and Luttrell L. M. (2000) Transactivation of the EGF receptor mediates IGF-1-stimulated shc phosphorylation and ERK1/2 activation in COS-7 cells. J. Biol. Chem. 275, 22,583–22,589.PubMedGoogle Scholar
  165. 165.
    Giancotti F. G. and Ruoslahti E. (1999) Integrin signaling. Science 285, 1028–1032.PubMedGoogle Scholar
  166. 166.
    Humphries M. J. (2000) Integrin structure. Biochem. Soc. Trans. 28, 311–339.PubMedGoogle Scholar
  167. 167.
    Sundberg C. and Rubin K. (1996) Stimulation of beta1 integrins on fibroblasts induces PDGF independent tyrosine phosphorylation of PDGF beta-receptors. J. Cell Biol. 132, 741–752.PubMedGoogle Scholar
  168. 168.
    Chen K. D., Li Y. S., Kim M., et al. (1999) Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J. Biol. Chem. 274, 18,393–18,400.PubMedGoogle Scholar
  169. 169.
    Moro L., Venturino M., Bozzo C., et al. (1998) Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J. 17, 6622–6632.PubMedGoogle Scholar
  170. 170.
    Falcioni R., Antonini A., Nistico P., et al. (1997) Alpha 6 beta 4 and alpha 6 beta 1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp. Cell Res. 236, 76–85.PubMedGoogle Scholar
  171. 171.
    Mariotti A., Kedeshian P. A., Dans M., Curatola A. M., Gagnoux-Palacios L., and Giancotti F. G. (2001) EGF-R signaling through Fyn kinase disrupts the function of integrin alpha6beta4 at hemidesmosomes: role in epithelial cell migration and carcinoma invasion. J. Cell Biol. 155, 447–458.PubMedGoogle Scholar
  172. 172.
    Schneller M., Vuori K., and Ruoslahti E. (1997) Alphavbeta3 integrin associates with activated insulin and PDGFbeta receptors and potentiates the biological activity of PDGF. EMBO J. 16, 5600–5607.PubMedGoogle Scholar
  173. 173.
    Baron W., Decker L., Colognato H., and French-Constant C. (2003) Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. Curr. Biol. 13, 151–155.PubMedGoogle Scholar
  174. 174.
    Leitinger B. and Hogg N. (2002) The involvement of lipid rafts in the regulation of integrin function. J. Cell Sci. 115, 963–972.PubMedGoogle Scholar
  175. 175.
    Sieg D. J., Hauck C. R., Ilic D., et al. (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat. Cell Biol. 2, 249–256.PubMedGoogle Scholar
  176. 176.
    Aplin A. E. and Juliano R. L. (1999) Integrin and cytoskeletal regulation of growth factor signaling to the MAP kinase pathway. J. Cell Sci. 112, 695–706.PubMedGoogle Scholar
  177. 177.
    Sengupta S., Xiao Y. J., and Xu Y. (2003) A novel laminin-induced LPA autocrine loop in the migration of ovarian cancer cells. FASEB J. 17, 1570–1572.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Kanchana Natarajan
    • 1
  • Bradford C. Berk
    • 2
  1. 1.Center for Cardiovascular Research, Department of MedicineUniversity of RochesterRochesterNY
  2. 2.Center for Cardiovascular Research, Department of MedicineUniversity of RochesterRochesterNY

Personalised recommendations