Genetic Reconstitution of Bone Marrow for the Study of Signal Transduction Ex Vivo

  • Martha S. Jordan
Part of the Methods in Molecular Biology™ book series (MIMB, volume 332)


Introducing genes into cells by retroviral transduction has greatly increased the abil-ity to study signal transduction pathways in primary cells. Retroviral transduction has proven to be an efficient method to express genes of interest in cells that are difficult to manipulate using standard transfection techniques. This technology also can be coupled with classic protocols for generating bone marrow chimeras. Murine bone marrow cells can be infected with a retrovirus expressing wild-type or mutant forms of a gene of interest and subsequently transplanted into irradiated recipient hosts. The requirement for a gene of interest in hematopoietic cell development, as well as its role in specific signal transduction pathways, can then be studied. This chapter provides protocols for the production of high-titer replication-incompetent retrovirus, retroviral infection of murine bone marrow, the generation of bone marrow chimeras, and analysis of chimeras by flow cytometry.

Key Words

Chimeras retroviral transduction 5-fluorouracil MIGR1 MCSV spin infection GFP 


  1. 1.
    Judd B. A., Myung P. S., Obergfell A., et al. (2002) Differential requirement for LAT and SLP-76 in GPVI versus T cell receptor signaling. J. Exp. Med. 195, 705–717.PubMedCrossRefGoogle Scholar
  2. 2.
    Gugasyan R., Quilici C., Stacey T. T., et al. (2002) Dok-related protein negatively regulates T cell development via its RasGTPase-activating protein and Nck docking sites. J. Cell Biol. 158, 115–125.PubMedCrossRefGoogle Scholar
  3. 3.
    Izon D. J., Punt J. A., Xu L., et al. (2001) Notch1 regulates maturation of CD4+ and CD8+ thymocytes by modulating TCR signal strength. Immunity 14, 253–264.PubMedCrossRefGoogle Scholar
  4. 4.
    Mann R., Mulligan R. C., and Baltimore D. (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153–159.PubMedCrossRefGoogle Scholar
  5. 5.
    Finer M. H., Dull T. J., Qin L., Farson D., and Roberts M. R. (1994) kat: a high-efficiency retroviral transduction system for primary human T lymphocytes. Blood 83, 43–50.PubMedGoogle Scholar
  6. 6.
    Soneoka Y., Cannon P. M., Ramsdale E. E., et al. (1995) A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res. 23, 628–633.PubMedCrossRefGoogle Scholar
  7. 7.
    Naviaux R. K., Costanzi E., Haas M., and Verma I. M. (1996) The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705.PubMedGoogle Scholar
  8. 8.
    Pear 6W. S., Nolan G. P., Scott M. L., and Baltimore D. (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396.PubMedCrossRefGoogle Scholar
  9. 9.
    Pear W. S., Miller J. P., Xu L., et al. (1998) Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92, 3780–3792.PubMedGoogle Scholar
  10. 10.
    Hawley R. G., Lieu F. H., Fong A. Z., and Hawley T. S. (1994) Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1, 136–138.PubMedGoogle Scholar
  11. 11.
    Saitoh S., Odom S., Gomez G., et al. (2003) The four distal tyrosines are required for LAT-dependent signaling in FcepsilonRI-mediated mast cell activation. J. Exp. Med. 198, 831–843.PubMedCrossRefGoogle Scholar
  12. 12.
    Mizuguchi H., Xu Z., Ishii-Watabe A., Uchida E., and Hayakawa T. (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol. Ther. 1, 376–382.PubMedCrossRefGoogle Scholar
  13. 13.
    Korngold B. and Sprent J. (1978) Lethal graft-versus-host disease after bone marrow transplantation across minor histocompatibility barriers in mice. Prevention by removing mature T cells from marrow. J. Exp. Med. 148, 1687–1698.PubMedCrossRefGoogle Scholar
  14. 14.
    Bodine D. M., Karlsson S., and Nienhuis A. W. (1989) Combination of interleukins 3 and 6 preserves stem cell function in culture and enhances retrovirus-mediated gene transfer into hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 86, 8897–8901.PubMedCrossRefGoogle Scholar
  15. 15.
    Kotani H., Newton P. B., 3rd, Zhang S., et al. (1994) Improved methods of retroviral vector transduction and production for gene therapy. Hum. Gene Ther. 5, 19–28.PubMedCrossRefGoogle Scholar
  16. 16.
    Pear W. S. (1996) Transient transfection methods for preparation of high-titer retroviral supernatants, in Current Protocols in Molecular Biology (Chanda V. B., ed.), Vol. 2, John Wiley & Sons, New York, pp. 9.11.10–19.11.11.Google Scholar
  17. 17.
    Spangrude G. J. (1994) Assesment of lymphocyte development in radiation bone marrow chimeras, in Current Protocols in Immunology (Coico R., ed.), Vol. 1, pp. 4.6.1–4.6.7. John Wiley & Sons, New York.Google Scholar
  18. 18.
    Clements J. L., Yang B., Ross-Barta S. E., et al. (1998) Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 281, 416–419.PubMedCrossRefGoogle Scholar
  19. 19.
    Luthman H. and Magnusson G. (1983) High efficiency polyoma DNA transfection of chloroquine treated cells. Nucleic Acids Res. 11, 1295–1308.PubMedCrossRefGoogle Scholar
  20. 20.
    Van Zant G. (1984) Studies of hematopoietic stem cells spared by 5-fluorouracil. J. Exp. Med. 159, 679–690.PubMedCrossRefGoogle Scholar
  21. 21.
    Huppa J. B., Gleimer M., Sumen C., and Davis M. M. (2003) Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat. Immunol. 4, 749–755.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Martha S. Jordan
    • 1
  1. 1.Department of Cancer Biology, Abramson Family Cancer Research InstituteUniversity of PennsylvaniaPhiladelphiaPA

Personalised recommendations