Skip to main content

G Protein-Coupled Receptor Dimerization and Signaling

  • Protocol
Transmembrane Signaling Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 332))

  • 1575 Accesses

Summary

G protein-coupled receptors are involved in the regulation of many aspects of normal physiology and pathology. Recent research has broadened our view of how the cell trans-duces ligand binding to cellular responses. It is becoming clear that phenomena that take place both at the cell surface, such as receptor oligomerization, as well as intracellularly, such as interaction between different signaling pathways, have important roles in the response elicited by a ligand. The study of these events requires the combined use of classical biochemical techniques with novel methods that allow analysis of these mecha-nisms. This chapter gives an overview of both types of techniques, with an emphasis on discussing their main applications and the conclusions that can be drawn in each case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierce K., Premont R. T., and Lefkowitz R. J. (2002) Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650.

    Article  PubMed  CAS  Google Scholar 

  2. Lefkowitz R. J. (2000) The superfamily of heptahelical receptors. Nat. Cell Biol. 2, E133–E136.

    Article  PubMed  CAS  Google Scholar 

  3. Proudfoot A. (2002) Chemokine receptors: multifaceted therapeutic targets. Nat. Rev. Immunol. 2, 106–115.

    Article  PubMed  CAS  Google Scholar 

  4. Kenakin T. (2004) Principles: receptor theory in pharmacology. Trends Pharmacol. Sci. 25, 186–192.

    Article  PubMed  CAS  Google Scholar 

  5. Rodríguez-Frade J. M., Martínez A. C., and Mellado M. (2005) Chemokine sig-naling defines novel targets for therapeutic intervention. Mini. Rev. Med. Chem. 5, 781–789.

    Article  PubMed  Google Scholar 

  6. Salahpour A., Angers S., and Bouvier M. (2000) Functional significance of oligomer-ization of G-protein-coupled receptors. Trends Endocrinol. Metab. 11, 163–168.

    Article  PubMed  CAS  Google Scholar 

  7. Lee S. P., O’Dowd B. F., and George S. R. (2003) Homo-and hetero-oligomer-ization of G protein-coupled receptors. Life. Sci. 74, 173–180.

    Article  PubMed  CAS  Google Scholar 

  8. Baldwin J. M. (1994) Structure and function of receptors coupled to G proteins. Curr. Opin. Cell Biol. 6, 180–290.

    Article  PubMed  CAS  Google Scholar 

  9. Karnik S. S., Gogonea C., Patil S., Saad Y., and Takezako T. (2003) Activa-tion of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol. Metab. 14, 431–417.

    Article  PubMed  CAS  Google Scholar 

  10. Hamm H. E. and Gilchrist A. (1996) Heterotrimeric G proteins. Curr. Opin. Cell Biol. 8, 189–196.

    Article  PubMed  CAS  Google Scholar 

  11. Brady A. E. and Limbird LE. (2003) G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal. 14, 297–309.

    Article  Google Scholar 

  12. Pitcher J., Freedman N. J., and Lefkowitz R. J. (1998) G protein-coupled recep-tor kinases. Annu. Rev. Biochem. 67, 653–692.

    Article  PubMed  CAS  Google Scholar 

  13. Ferguson S. S. (2001) Evolving concepts in G protein-coupled receptor endocyto-sis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1–24.

    PubMed  CAS  Google Scholar 

  14. Oakley R., Laporte S. A., Holt J. A., Barak L. S., and Caron M. G. (1999) Association of b-arrestin with G protein-coupled receptors during clathrin-medi-ated endocytosis dictates the profile of receptor resensitization. J. Biol. Chem. 274, 32,248–32,257.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang J., Ferguson S. S. G., Barak L. S., Menard L., and Garon M. G. (1996) Dynamin and b-arrestin reveal distinct mechanism for G protein-coupled receptor internalization. J. Biol. Chem. 271, 18,302–18,305.

    Article  PubMed  CAS  Google Scholar 

  16. Bottomley M., Lo Surdo P., and Driscoll P. C. (1999) Endocytosis: how dynamin sets vesicles pHree!!! Curr. Biol. 9, R301–R304.

    Article  PubMed  CAS  Google Scholar 

  17. de Vries L. and Farquhar M. G. (1999) RGS proteins: more than just GAPs for heterotrimeric G proteins. Trends Cell Biol. 9, 138–144.

    Article  PubMed  Google Scholar 

  18. Ishii M. and Kurachi Y. (2003) Physiological actions of regulators of G-protein signaling (RGS) proteins. Life Sci. 74, 163–171.

    Article  PubMed  CAS  Google Scholar 

  19. Terrillon S. and Bouvier M. (2004) Roles of G-protein-coupled receptor dimer-ization. EMBO Rep. 5, 30–34.

    Article  PubMed  CAS  Google Scholar 

  20. George S. R., O’Dowd B. F., and Lee S. P. (2002) G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug Discov. 1, 808–820.

    Article  PubMed  CAS  Google Scholar 

  21. Salim K., Fenton T., Bacha J. A., et al. (2002) Oligomerization of G-protein-coupled receptors shown by selective co-immunoprecipitation. J. Biol. Chem. 277, 15,482–15,485.

    Article  PubMed  CAS  Google Scholar 

  22. Gomes I., Jordan B. A., Gupta A., Rios C., Trapaidze N., and Devi L. A. (2001) G protein-coupled receptor dimerization: implications in modulating receptor function. J. Mol. Med. 79, 226–242.

    Article  PubMed  CAS  Google Scholar 

  23. Mueller A., Kelly E., and Strange P. G. (2002) Pathways for internalization and recycling of the chemokine receptor CCR5. Blood 99, 785–791.

    Article  PubMed  CAS  Google Scholar 

  24. Cvejic S. and Devi L. A. (1997) Dimerization of the d opioid receptor: implica-tion for a role in receptor internalization. J. Biol. Chem. 272, 26,959–26,964.

    Article  PubMed  CAS  Google Scholar 

  25. Mellado M., Rodríguez-Frade J. M., Maes S., and Martínez-A. C. (2001) Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Ann. Rev. Immunol. 19, 397–421.

    Article  CAS  Google Scholar 

  26. Harlow E. and Lane D. (eds.) (1988) Antibodies. A Laboratory Manual. Cold Spring Harbor Laboratories, New York.

    Google Scholar 

  27. Chuntharapai A., Lee J., Burnier J., Wood W. I., Hébert C., and Kim K. J. (1994) Neutralizing monoclonal antibodies to human IL-8 receptor A map to the NH2-terminal region of the receptor. J. Immunol. 152, 1783–1789.

    PubMed  CAS  Google Scholar 

  28. Van Aelst L. and D’Souza-Schorey C. (1997) Rho GTPases and signaling net-works. Genes Dev. 15, 2295–2322.

    Article  Google Scholar 

  29. Sekar R. B. and Periasami A. (2003) Fluoresecence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell. Biol. 160,629–633.

    Google Scholar 

  30. Periasamy A., Elangovan M., Elliott E., and Brautigan D. L. (2002) Fluores-cence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells. Methods Mol. Biol. 183, 89–100.

    PubMed  CAS  Google Scholar 

  31. McVey M., Ramsay D., Kellet E., et al. (2001) Monitoring receptor oligomer-ization using time-resolved fluorescence resonance energy transfer and bioluminiscence resonance energy transfer. J. Biol. Chem. 276, 14092–14099.

    PubMed  CAS  Google Scholar 

  32. Bastiaens P. I. and Squire A. (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell. Biol. 9, 48–52.

    Article  PubMed  CAS  Google Scholar 

  33. Sorkin A., McClure M., Huang F., and Carter R. (2000) Interaction of EGF receptor and grb2 in living cells visualized by fluorescence visualized by fluores-cence resonance energy transfer (FRET) microscopy. Curr. Biol. 10, 1395–1398.

    Article  PubMed  CAS  Google Scholar 

  34. Gu C., Cali J. J., and Cooper D. M. (2002) Dimerization of mammalian adeny-late cyclases. Eur. J. Biochem. 269, 413–421.

    Article  PubMed  CAS  Google Scholar 

  35. Xia Z. and Liu Y. (2001) Reliable and global measurement of fluorescence reso-nance energy transfer using fluorescence resonance energy transfer (FRET) microscopy. Biophys. J. 81, 2395–4028.

    Article  PubMed  CAS  Google Scholar 

  36. Angers S., Salahpour A., and Bouvier M. (2002) Dimerization: an emerging concept for G protein-coupled receptor onotgeny and function. Ann. Rev. Pharmacol. Toxicol. 42, 409–435.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Mellado, M., Serrano, A., Mart’inez-A, C., Rodríguez-Frade, J.M. (2006). G Protein-Coupled Receptor Dimerization and Signaling. In: Ali, H., Haribabu, B. (eds) Transmembrane Signaling Protocols. Methods in Molecular Biology™, vol 332. Humana Press. https://doi.org/10.1385/1-59745-048-0:141

Download citation

  • DOI: https://doi.org/10.1385/1-59745-048-0:141

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-546-0

  • Online ISBN: 978-1-59745-048-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics