Skip to main content

Transmembrane Signaling by G Protein-Coupled Receptors

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 332))

Summary

G protein-coupled receptors (GPCRs) make up the largest and most diverse family of membrane receptors in the human genome, relaying information about the presence of diverse extracellular stimuli to the cell interior. All known GPCRs share a common architecture of seven membrane-spanning helices connected by intra- and extracellular loops. Most GPCR-mediated cellular responses result from the receptor acting as a ligand-activated guanine nucleotide exchange factor for heterotrimeric guanine nucleotide-binding (G) proteins whose dissociated subunits activate effector enzymes or ion chan-nels. GPCR signaling is subject to extensive negative regulation through receptor desensitization, sequestration, and down regulation, termination of G protein activation by GTPase-activation proteins, and enzymatic degradation of second messengers. Addi-tional protein—protein interactions positively modulate GPCR signaling by influencing ligand-binding affinity and specificity, coupling between receptors, G proteins and effectors, or targeting to specific subcellular locations. These include the formation of GPCR homo- and heterodimers, the interaction of GPCRs with receptor activity-modi-fying proteins, and the binding of various scaffolding proteins to intracellular receptor domains. In some cases, these processes appear to generate signals in conjunction with, or even independent of, G protein activation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  PubMed  CAS  Google Scholar 

  2. Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G., et al. (2001) The sequence of the human genome. Science 291, 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  3. Bargmann C. (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282, 2028–2033.

    Article  PubMed  CAS  Google Scholar 

  4. Flower D. R. (1999) Modelling G-protein-coupled receptors for drug design. Biochim. Biophys. Acta. 1422, 207–234.

    PubMed  CAS  Google Scholar 

  5. Fredriksson R., Lagerstrom M. C., Lundin L. G., and Schioth H. B. (2003) TheG-protein-coupled receptors in the human genome form five main families. Phylogeneticanalysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272.

    Article  PubMed  CAS  Google Scholar 

  6. Birnbaumer L., Pohl S. L., Michiel H., Krans M. J., and Rodbell M. (1970) The actions of hormones on the adenyl cyclase system. Adv. Biochem. Psychopharmacol. 3, 185–208.

    PubMed  CAS  Google Scholar 

  7. Insel P. A., Maguire M. E., Gilman A. G., Bourne H. R., Coffino P., and Melmon K. L. (1976) Beta adrenergic receptors and adenylate cyclase: productsof separate genes? Mol. Pharmacol. 12, 1062–1069.

    PubMed  CAS  Google Scholar 

  8. Gilman A. G. (1987) G proteins: transducers of receptor-generated signals. Ann. Rev. Biochem. 56, 615–649.

    Article  PubMed  CAS  Google Scholar 

  9. Sternweis P. C. and Gilman A. G. (1979) Reconstitution of catecholamine-sensi-tiveadenylate cyclase. Reconstitution of the uncoupled variant of the S49 lym-phomacell. J. Biol. Chem. 254, 3333–3340.

    PubMed  CAS  Google Scholar 

  10. Northup J. K., Sternweis P. C., Smigel M. D., Schleifer L. S., Ross E. M., and Gilman A. G. (1980) Purification of the regulatory component of adenylate cy-clase. Proc. Natl. Acad. Sci. USA 77, 6516–6520.

    Article  PubMed  CAS  Google Scholar 

  11. Manning D. R. and Gilman A. G. (1983) The regulatory components of adeny-latecyclase and transducin. A family of structurally homologous guanine nucle-otide-binding proteins. J. Biol. Chem. 258, 7059–7063.

    PubMed  CAS  Google Scholar 

  12. Lefkowitz R. J. (2000) The superfamily of heptahelical receptors. Nat. Cell Biol. 2, E133–E136.

    Article  PubMed  CAS  Google Scholar 

  13. Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., et al. (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745.

    Article  PubMed  CAS  Google Scholar 

  14. Kolakowski L. F., Jr. (1994) GCRDb: A G-protein coupled receptor database. Recept. Channels 2, 1–7.

    PubMed  CAS  Google Scholar 

  15. Perez D. M. (2003) The evolutionarily triumphant G protein-coupled receptor. Mol. Pharmacol. 63, 1202–1205.

    Article  PubMed  CAS  Google Scholar 

  16. Arshavsky V. Y., Lamb T. D., and Pugh E. N., Jr. (2002) G proteins andphototransduction. Ann. Rev. Physiol. 64, 153–187.

    Article  CAS  Google Scholar 

  17. Ridge K. D., Abdulaev N. G., Sousa M., and Palczewski K. (2003) Phototransduction: Crystal clear. Trends Biochem. Sci. 28, 479–487.

    Article  PubMed  CAS  Google Scholar 

  18. Gether U. and Kobilka B. K. (1998) G protein-coupled receptors. II. Mechanismof agonist activation. J. Biol. Chem. 273, 17,979–17,982.

    Article  PubMed  CAS  Google Scholar 

  19. De Lean A., Stadel J. M., and Lefkowitz R. J. (1980) A ternary complex modelexplains the agonist-specific binding properties of the adenylate cyclase-coupledbeta-adrenergic receptor. J. Biol. Chem. 255, 7108–7117.

    PubMed  Google Scholar 

  20. Samama P., Cotecchia S., Costa T., and Lefkowitz R. J. (1993) A mutation-inducedactivated state of the beta 2-adrenergic receptor. Extending the ternarycomplex model. J. Biol. Chem. 268, 4625–4536.

    PubMed  CAS  Google Scholar 

  21. Lefkowitz R. J., Cotecchia S., Samama P., and Costa T. (1993) Constitutiveactivity of receptors coupled to guanine nucleotide regulatory proteins. TrendsPharmacol. Sci. 14, 303–307.

    CAS  Google Scholar 

  22. Kenakin T. (2002) Drug efficacy at G protein-coupled receptors. Ann. Rev. Pharmacol. Toxicol. 42, 349–379.

    Article  CAS  Google Scholar 

  23. Kenakin T. (2003) Ligand-selective receptor conformations revisited: the prom-iseand the problem. Trends Pharmacol. Sci. 24, 346–354.

    Article  PubMed  CAS  Google Scholar 

  24. Gurevich V. V., Pals-Rylaarsdam R., Benovic J. L., Hosey M. M., and Onorato J. J. (1997) Agonist-receptor-arrestin, an alternative ternary complex with highagonist affinity. J. Biol. Chem. 272, 28,849–28,852.

    Article  PubMed  CAS  Google Scholar 

  25. Key T. A., Bennett T. A., Foutz T. D., Gurevich V. V., Sklar L. A., and Prossnitz E. R. (2001) Regulation of formyl peptide receptor agonist affinity byreconstitution with arrestins and heterotrimeric G proteins. J. Biol. Chem. 276, 49,204–49,212.

    Article  PubMed  CAS  Google Scholar 

  26. Swaminath G., Xiang Y., Lee T. W., Steenhuis J., Parnot C., and Kobilka B. K. (2004) Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evi-dencefor intermediate conformational states. J. Biol. Chem. 279, 686–691.

    Article  PubMed  CAS  Google Scholar 

  27. Whistler J. L. and von Zastrow M. (1998) Morphine-activated opioid receptorselude desensitization by beta-arrestin. Proc. Natl. Acad. Sci. USA 95, 9914–9919.

    Article  PubMed  CAS  Google Scholar 

  28. Kohout T. A., Nicholas S. L., Perry S. J., Reinhart G., Junger S., and Struthers R. S. (2004) Differential desensitization, receptor phosphorylation, beta-arrestinrecruitment, and ERK1/2 activation by the two endogenous ligands for the CCchemokine receptor 7. J. Biol. Chem. 279, 23,214–23,222.

    Article  PubMed  CAS  Google Scholar 

  29. Holloway A. C., Qian H., Pipolo L., Ziogas J., Miura S., Karnik S., et al. (2002) Side-chain substitutions within angiotensin II reveal different requirementsfor signaling, internalization, and phosphorylation of type 1a angiotensin recep-tors. Mol. Pharmacol. 61, 768–777.

    Article  PubMed  CAS  Google Scholar 

  30. Wei H., Ahn S., Shenoy S. K., Karnik S. S., Hunyady L., Luttrell L. M., and Lefkowitz R. J. (2003) Independent beta-arrestin 2 and G protein-mediated path-waysfor angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl. Acad. Sci. USA 100, 10,782–10,787.

    Article  PubMed  CAS  Google Scholar 

  31. Downes G. B. and Gautam N. (1999) The G protein subunit gene families. Genomics 62, 544–552.

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt C. J., Thomas T. C., Levine M. A., and Neer N. J. (1992) Specificity of G protein beta and gamma subunit interactions. J. Biol. Chem. 267, 13,807–13,810.

    PubMed  CAS  Google Scholar 

  33. Hildebrandt J. D. (1997) Role of subunit diversity in signaling by heterotrimericG proteins. Biochem. Pharmacol. 54, 325–339.

    Article  PubMed  CAS  Google Scholar 

  34. Ford C. E., Skiba N. P., Bae H., Daaka Y., Reuveny E., Shekter L. R., et al. (1998) Molecular basis for interactions of G protein betagamma subunits witheffectors. Science 280, 1271–1274.

    Article  PubMed  CAS  Google Scholar 

  35. Sprang S. R. (1997) G protein mechanisms: Insights from structural analysis. Ann. Rev. Pharmacol, Toxicol. 36, 461–480.

    Google Scholar 

  36. Coleman D. E. and Sprang S. R. (1996) How G proteins work: A continuingstory. Trends. Biochem. Sci. 21, 41–44.

    PubMed  CAS  Google Scholar 

  37. Casey P. J. (1994) Lipid modifications of G proteins. Curr. Opin. Cell Biol. 6, 219–225.

    Article  PubMed  CAS  Google Scholar 

  38. Clapham D. E. and Neer E. J. (1993) New roles for G-protein beta gamma-dimersin transmembrane signalling. Nature 365, 403–406.

    Article  PubMed  CAS  Google Scholar 

  39. Zwartkruis F. J. and Bos J. L. (1999) Ras and Rap1: Two highly related smallGTPases with distinct function. Exp. Cell Res. 253, 157–165.

    Article  PubMed  CAS  Google Scholar 

  40. Sunahara R. K., Dessauer C. W., and Gilman A. G. (1996) Complexity anddiversity of mammalian adenylyl cyclases. Ann. Rev. Pharmacol. Toxicol. 36, 461–480.

    Article  CAS  Google Scholar 

  41. Morris A. J. and Scarlata S. (1997) Regulation of effectors by G-protein alpha-andbeta gamma-subunits. Recent insights from studies of the phospholipase c-betaisoenzymes. Biochem. Pharmacol. 54, 429–435.

    Article  PubMed  CAS  Google Scholar 

  42. Wickman K. D. and Clapham D. E. (1995) G-protein regulation of ion channels. Curr. Opin. Neurobiol. 5, 278–285.

    Article  PubMed  CAS  Google Scholar 

  43. Albert P. R. and Robillard L. (2002) G protein specificity: Traffic direction re-quired. Cell. Signal. 14, 407–418.

    Article  PubMed  CAS  Google Scholar 

  44. Stoffel R. H. 3rd, Pitcher J. A., and Lefkowitz R. J. (1997) Targeting G protein-coupledreceptor kinases to their receptor substrates. J. Membr. Biol. 157, 1–8.

    Article  PubMed  CAS  Google Scholar 

  45. Perry S. J., Baillie G. S., Kohout T. A., McPhee I., Magiera M. M., Ang K. L., et al. (2002) Targeting of cyclic AMP degradation to beta 2-adrenergic receptorsby beta-arrestins. Science 298, 834–836.

    Article  PubMed  CAS  Google Scholar 

  46. Baillie G. S., Sood A., McPhee I., et al. (2003) Beta-Arrestin-mediated PDE4cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching fromGs to Gi. Proc. Natl. Acad. Sci. USA 100, 940–945.

    Article  PubMed  CAS  Google Scholar 

  47. Ross E. M. (1995) G protein GTPase-activating proteins: Regulation of speed, amplitude, and signaling selectivity. Recent Prog. Horm. Res. 50, 207–221.

    PubMed  CAS  Google Scholar 

  48. Ross E. M. and Wilkie T. M. (2000) GTPase-activating proteins forheterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-likeproteins. Annu. Rev. Biochem. 69, 795–827.

    Article  PubMed  CAS  Google Scholar 

  49. Berman D. M. and Gilman A. G. (1998) Mammalian RGS proteins: Barbariansat the gate. J. Biol. Chem. 273, 1269–1272.

    Article  PubMed  CAS  Google Scholar 

  50. Schulz R. (2001) The pharmacology of phosducin. Pharmacol. Res. 43, 1–10.

    Article  PubMed  CAS  Google Scholar 

  51. Pitcher J., Lohse M. J., Codina J., Caron M. G., and Lefkowitz R. J. (1992) Desensitization of the isolated beta 2-adrenergic receptor by beta-adrenergic re-ceptorkinase, cAMP-dependent protein kinase, and protein kinase C occurs viadistinct molecular mechanisms. Biochemistry 31, 3193–3197.

    Article  PubMed  CAS  Google Scholar 

  52. Freedman N. J. and Lefkowitz R. J. (1996) Desensitization of G protein-coupledreceptors. Recent Prog. Horm. Res. 51, 319–351.

    PubMed  CAS  Google Scholar 

  53. Daaka Y., Luttrell L. M., and Lefkowitz R. J. (1997) Switching of the couplingof the beta2-adrenergic receptor to different G proteins by protein kinase A. Na-ture 390, 88–91.

    CAS  Google Scholar 

  54. Zamah A. M., Delahunty M., Luttrell L. M., and Lefkowitz R. J. (2002) Proteinkinase A-mediated phosphorylation of the beta2-adrenergic receptor regulates itscoupling to Gs and Gi. Demonstration in a reconstituted system. J. Biol. Chem. 277, 31,249–31,256.

    Article  PubMed  CAS  Google Scholar 

  55. Lawler O. A., Miggin S. M., and Kinsella B. T. (2001) Protein kinase A-medi-atedphosphorylation of serine 357 of the mouse prostacyclin receptor regulatesits coupling to Gs-, to Gi-and to Gq-coupled effector signaling. J. Biol. Chem. 276, 33,596–33,607.

    Article  PubMed  CAS  Google Scholar 

  56. Lefkowitz R. J., Pierce K. L., and Luttrell L. M. (2002) Dancing with differentpartners: Protein kinase A phosphorylation of seven membrane-spanning recep-torsregulates their G protein-coupling specificity. Mol. Pharmacol. 62, 971–974.

    Article  PubMed  CAS  Google Scholar 

  57. Lohse M. J., Andexinger S., Pitcher J., et al. (1993) Receptor specific desensiti-zationwith purified proteins. Kinase dependence and receptor specificity of β-arrestin and arrestin in the β2-adrenergic receptor and rhodopsin systems. J. Biol. Chem. 267, 8558–8564.

    Google Scholar 

  58. Ferguson S. S. (2001) Evolving concepts in G protein-coupled receptor endocy-tosis:the role in receptor desensitization and signaling. Pharm. Rev. 53, 1–24.

    PubMed  CAS  Google Scholar 

  59. Luttrell L. M., and Lefkowitz R. J. (2002) The role of beta-arrestins in the termi-nationand transduction of G-protein-coupled receptor signals. J. Cell. Sci. 115, 455–465.

    PubMed  CAS  Google Scholar 

  60. Goodman O. B., Jr., Krupnick J. G., Santini F., et al. (1996) Beta-arrestin acts asa clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383, 447–450.

    Article  PubMed  CAS  Google Scholar 

  61. Laporte S. A., Oakley R. H., Zhang J., et al. (1999) The beta2-adrenergic recep-tor/beta-arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc. Natl. Acad. Sci. USA 96, 3712–3717.

    Article  PubMed  CAS  Google Scholar 

  62. Carman C. V., Parent J. L., Day P. W., et al. (1999) Selective regulation ofGalpha(q/11) by an RGS domain in the G protein-coupled receptor kinase, GRK2. J. Biol. Chem. 274, 34,483–34,492.

    Article  PubMed  CAS  Google Scholar 

  63. Lodowski D. T., Pitcher J. A., Capel W. D., Lefkowitz R. J., and Tesmer J. J. (2003) Keeping G proteins at bay: a complex between G protein-coupled receptorkinase 2 and G beta gamma. Science 300, 1256–1262.

    Article  PubMed  CAS  Google Scholar 

  64. Dhami G. K., Dale L. B., Anborgh P. H., O’Connor-Halligan K. E., Sterne-Marr R., and Ferguson S. S. (2004) G Protein-coupled receptor kinase 2 RGShomology domain binds to both metabotropic glutamate receptor 1a and G alphaq to attenuate signaling. J. Biol. Chem. 279, 16,614–16,620.

    Article  PubMed  CAS  Google Scholar 

  65. Barak L. S., Ferguson S. S., Zhang J., and Caron M. G. (1997) A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor acti-vation. J. Biol. Chem. 272, 27,497–27,500.

    Article  PubMed  CAS  Google Scholar 

  66. Oakley R. H., Laporte S. A., Holt J. A., Barak L. S., and Caron M. G. (2001) Molecular determinants underlying the formation of stable intracellular G pro-tein-coupled receptor-beta-arrestin complexes after receptor endocytosis. J. Biol. Chem. 276, 19,452–19,460.

    Article  PubMed  CAS  Google Scholar 

  67. Oakley R. H., Laporte S. A., Holt J. A., Caron M. G., and Barak L. S. (2000) Differential affinities of visual arrestin, beta-arrestin1, and beta-arrestin2 for Gprotein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275, 17,201–17,210.

    Article  PubMed  CAS  Google Scholar 

  68. Kohout T. A., Lin F-T., Perry S. J., Conner D. A., and Lefkowitz R. J. (2001) Beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling andtrafficking. Proc. Natl. Acad. Sci. USA 98, 1601–1606.

    Article  PubMed  CAS  Google Scholar 

  69. Lin F-T., Krueger K. M., Kendall H. E., et al. (1997) Clathrin-mediated endocy-tosisof the beta-adrenergic receptor is regulated by phosphorylation/dephospho-rylationof beta-arrestin1. J. Biol. Chem. 272, 31,051–31,057.

    Article  PubMed  CAS  Google Scholar 

  70. Lin F-T., Chen W., Shenoy S., Cong M., Exum S. T., and Lefkowitz R. J. (2002) Phosphorylation of beta-arrestin2 regulates it function in internalization ofbeta(2)-adrenergic receptors. Biochemistry 41, 10,692–10,699.

    Article  PubMed  CAS  Google Scholar 

  71. Shenoy S. K., McDonald P. H., Kohout T. A., and Lefkowitz R. J. (2001) Regu-lationof receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science 294, 1307–1313.

    Article  PubMed  CAS  Google Scholar 

  72. Martin N. P., Lefkowitz R. J., and Shenoy S. K. (2003) Regulation of V2 vasopressinreceptor degradation by agonist-promoted ubiquitination. J. Biol. Chem. 278, 45,954–45,959.

    Article  PubMed  CAS  Google Scholar 

  73. Shenoy S. K. and Lefkowitz R. J. (2003) Trafficking pattern of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestindeubiquitination. J. Biol. Chem. 278, 14,498–14,506.

    Article  PubMed  CAS  Google Scholar 

  74. Paing M. M., Stutts A. B., Kohout T. A., Lefkowitz R. J., and Trejo J. (2002) Beta-arrestins regulate protease-activated receptor-1 desensitization but not inter-nalizationor down-regulation. J. Biol. Chem. 277, 1292–1300.

    Article  PubMed  CAS  Google Scholar 

  75. Vines C. M., Revankar C. M., Maestas D. C., et al. (2003) N-formyl peptidereceptors internalize but do not recycle in the absence of arrestins. J. Biol. Chem. 278, 41,581–41,584.

    Article  PubMed  CAS  Google Scholar 

  76. Brasselet S., Guillen S., Vincent J. P., and Mazella J. (2002) Beta-arrestin isinvolved in the desensitization but not in the internalization of the somatostatinreceptor 2A expressed in CHO cells. FEBS Lett. 10, 124–128.

    Article  Google Scholar 

  77. Zhang J., Ferguson S. S., Barak L. S., Menard L., and Caron M. G. (1996) Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled re-ceptorinternalization. J. Biol. Chem. 271, 18,302–18,305.

    Article  PubMed  CAS  Google Scholar 

  78. Vogler O., Nolte B., Voss M., Schmidt M., Jakobs K. H., and van Koppen C. J. (1999) Regulation of muscarinic acetylcholine receptor sequestration and func-tionby beta-arrestin. J. Biol. Chem. 274, 12,333–12,338.

    Article  PubMed  CAS  Google Scholar 

  79. Rapacciuolo A., Suvarna S., Barki-Harrington L., et al. (2003) Phosphorylationsites of the beta-1 adrenergic receptor determine the internalization pathway. J. Biol. Chem. 278, 35,403–35,411.

    Article  PubMed  CAS  Google Scholar 

  80. Pitcher J. A., Payne E. S., Csortos C., DePaoli-Roach A. A., and Lefkowitz R. J. (1995) The G-protein-coupled receptor phosphatase: a protein phosphatase type2A with a distinct subcellular distribution and substrate specificity. Proc. Natl. Acad. Sci. USA 92, 8343–8347.

    Article  PubMed  CAS  Google Scholar 

  81. Oakley R. H., Laporte S. A., Holt J. A., Barak L. S., and Caron M. G. (1999) Association of beta-arrestin with G protein-coupled receptors during clathrin-mediatedendocytosis dictates the profile of receptor resensitization. J. Biol. Chem. 274, 32,248–32,257.

    Article  PubMed  CAS  Google Scholar 

  82. Dale L. B., Seachrist J. L., Babwah A. V., and Ferguson S. S. (2004) Regula-tionof angiotensin II type 1A receptor intracellular retention, degradation, andrecycling by Rab5, Rab7, and Rab11 GTPases. J. Biol. Chem. 279, 13,110–13,118.

    Article  PubMed  CAS  Google Scholar 

  83. Seachrist J. L. and Ferguson S. S. (2003) Regulation of G protein-coupled recep-torendocytosis and trafficking by Rab GTPases. Life Sci. 74, 225–235.

    Article  PubMed  CAS  Google Scholar 

  84. Cao T. T., Deacon H. W., Reczek D., Bretscher A., and von Zastrow M. (1999) A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature 401, 286–290.

    Article  PubMed  CAS  Google Scholar 

  85. Whistler J. L., Enquist J., Marley A., et al. (2002) Modulation of postendocyticsorting of G protein-coupled receptors. Science 297, 529–531.

    Article  Google Scholar 

  86. Gage R. M., Kim K. A., Cao T. T., and von Zastrow M. (2001) A transplantablesorting signal that is sufficient to mediate rapid recycling of G protein-coupledreceptors. J. Biol. Chem. 276, 44,712–44,720.

    Article  PubMed  CAS  Google Scholar 

  87. Premont R. T., Claing A., Vitale N., et al. (1998) Beta2-Adrenergic receptorregulation by GIT1, a G protein-coupled receptor kinase-associated ADPribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci. USA 95, 14,082–14,087.

    Article  PubMed  CAS  Google Scholar 

  88. Claing A., Chen W., Miller W. E., et al. (2001) Beta-Arrestin-mediated ADP-ribosylationfactor 6 activation and beta 2-adrenergic receptor endocytosis. J. Biol. Chem. 276, 42,509–42,513.

    Article  PubMed  CAS  Google Scholar 

  89. Devi L. (2001) Heterodimerization of G-protein-coupled receptors: pharmacol-ogy, signaling and trafficking. Trends Pharmacol. Sci. 22, 532–537.

    Article  PubMed  CAS  Google Scholar 

  90. Milligan G. (2001) Oligomerisation of G-protein-coupled receptors. J. Cell Sci. 114, 1265–1271.

    PubMed  CAS  Google Scholar 

  91. Angers S., Salahpour A., and Bouvier M. (2002) Dimerization: An emergingconcept for G protein-coupled receptor ontogeny and function. Ann. Rev. Pharmacol. Toxicol. 42, 409–435.

    Article  CAS  Google Scholar 

  92. Nakanishi-Matsui M., Zheng Y. W., Sulciner D. J., et al. (2000) PAR3 is acofactor for PAR4 activation by thrombin. Nature 404, 609–613.

    Article  PubMed  CAS  Google Scholar 

  93. O’Brien P. J., Prevost N., Molino M., et al. (2000) Thrombin responses in hu-manendothelial cells. Contributions from receptors other than PAR1 include thetransactivation of PAR2 by thrombin-cleaved PAR1. J. Biol. Chem. 275, 13,502–13,509.

    Article  PubMed  Google Scholar 

  94. Baneres J. L. and Parello J. (2003) Structure-based analysis of GPCR function:Evidence for a novel pentameric assembly between the dimeric leukotriene B4receptor BLT1 and the G-protein. J. Mol. Biol. 329, 815–829.

    Article  PubMed  CAS  Google Scholar 

  95. Marshall G. R. (2001) Peptide interactions with G-protein coupled receptors. Biopolymers 60, 246–277.

    Article  PubMed  CAS  Google Scholar 

  96. Fotiadis D., Liang Y., Filipek S., Saperstein D. A., Engel A., and Palczewski K. (2003) Atomic-force microscopy: Rhodopsin dimers in native disc mem-branes. Nature 421, 127–128.

    Article  PubMed  CAS  Google Scholar 

  97. Jones K. A., Borowsky B., Tamm J. A., et al. (1998) GABA(B) receptors func-tionas a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396, 674–679.

    Article  PubMed  CAS  Google Scholar 

  98. Kaupmann K., Malitschek B., Schuler V., et al. (1998) GABA(B)-receptor sub-typesassemble into functional heteromeric complexes. Nature 396, 683–687.

    Article  PubMed  CAS  Google Scholar 

  99. Kniazeff J., Galvez T., Labesse G., and Pin J. P. (2002) No ligand binding inthe GB2 subunit of the GABA(B) receptor is required for activation and allos-tericinteraction between the subunits. J. Neurosci. 22, 7352–7361.

    PubMed  CAS  Google Scholar 

  100. Robbins M. J., Calver A. R., Filippov A. K., et al. (2001) GABA(B2) is essen-tialfor G-protein coupling of the GABA(B) receptor heterodimer. J. Neurosci. 21, 8043–8052.

    PubMed  CAS  Google Scholar 

  101. Margeta-Mitrovic M., Jan Y. N., and Jan L. Y. (2000) A trafficking checkpointcontrols GABA(B) receptor heterodimerization. Neuron 27, 97–106.

    Article  PubMed  CAS  Google Scholar 

  102. Ng G. Y., O’Dowd B. F., Lee S. P., et al. (1996) Dopamine D2 receptor dimersand receptor-blocking peptides. Biochem. Biophys. Res. Commun. 227, 200–204.

    Article  PubMed  CAS  Google Scholar 

  103. Schulz A., Grosse R., Schultz G., Gudermann T., and Schoneberg T. (2000) Structural implication for receptor oligomerization from functional reconstitu-tionstudies of mutant V2 vasopressin receptors. J. Biol. Chem. 275, 2381–2389.

    Article  PubMed  CAS  Google Scholar 

  104. Vila-Coro A. J., Rodriguez-Frade J. M., Martin de Ana A., Moreno-Ortiz M. C., Martinez A. C., and Mellado M. (1999) The chemokine SDF-1alpha trig-gersCXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 13, 1699–1710.

    PubMed  CAS  Google Scholar 

  105. Rodriguez-Frade J. M., Vila-Coro A. J., Martin de Ana A. M., Albar J. P., Martinez A. C., and Mellado M. (1999) The chemokine monocyte chemoattrac-tantprotein-1 induces functional responses through dimerization of its receptorCCR2. Proc. Natl. Acad. Sci. USA 96, 3628–3633.

    Article  PubMed  CAS  Google Scholar 

  106. Vila-Coro A. J., Mellado M., Martin de Ana A., et al. (2000) HIV-1 infectionthrough the CCR5 receptor is blocked by receptor dimerization. Proc. Natl. Acad. Sci. USA 97, 3388–3393.

    Article  PubMed  CAS  Google Scholar 

  107. Jordan B. A. and Devi L. A. (1999) G-protein-coupled receptorheterodimerization modulates receptor function. Nature 399, 697–700.

    Article  PubMed  CAS  Google Scholar 

  108. George S. R., Fan T., Xie Z., et al. (2000) Oligomerization of mu-and delta-opioidreceptors. Generation of novel functional properties. J. Biol. Chem. 275, 26,128–26,135.

    Article  PubMed  CAS  Google Scholar 

  109. AbdAlla S., Lother H., and Quitterer U. (2000) AT1-receptor heterodimersshow enhanced G-protein activation and altered receptor sequestration. Nature 407, 94–98.

    Article  PubMed  CAS  Google Scholar 

  110. AbdAlla S., Lother H., el Massiery A., and Quitterer U. (2001) Increased AT(1)receptor heterodimers in preeclampsia mediate enhanced angiotensin II respon-siveness. Nat. Med. 7, 1003–1009.

    Article  PubMed  CAS  Google Scholar 

  111. Barki-Harrington L., Luttrell L. M., and Rockman H. A. (2003) Dual inhibitionof beta-adrenergic and angiotensin II receptors by a single antagonist: a func-tionalrole for receptor-receptor interaction in vivo. Circulation 108, 1611–1618.

    Article  PubMed  CAS  Google Scholar 

  112. Kroeger K. M., Pfleger K. D., and Eidne K. A. (2003) G-protein coupled recep-toroligomerization in neuroendocrine pathways. Front. Neuroendocrinol. 24, 254–278.

    Article  PubMed  CAS  Google Scholar 

  113. Breitwieser G. E. (2004) G protein-coupled receptor oligomerization: Implica-tionsfor G protein activation and cell signaling. Circ. Res. 94, 17–27.

    Article  PubMed  CAS  Google Scholar 

  114. Terrillon S. and Bouvier M. (2004) Roles of G-protein-coupled receptor dimer-ization. EMBO Rep. 5, 30–34.

    Article  PubMed  CAS  Google Scholar 

  115. Whistler J. L., Chuang H. H., Chu P., Jan L. Y., and von Zastrow M. (1999) Functional dissociation of mu opioid receptor signaling and endocytosis: impli-cationsfor the biology of opiate tolerance and addiction. Neuron 23, 737–746.

    Article  PubMed  CAS  Google Scholar 

  116. Sexton P. M., Albiston A., Morfis M., and Tilakaratne N. (2001) Receptoractivity modifying proteins. Cell. Signal. 13, 73–83.

    Article  PubMed  CAS  Google Scholar 

  117. Foord S. M. and Marshall F. H. (1999) RAMPs: accessory proteins for seventransmembrane domain receptors. Trends Pharmacol. Sci. 20, 184–187.

    Article  PubMed  CAS  Google Scholar 

  118. Brady A. E. and Limbird L. E. (2002) G protein-coupled receptor interactingproteins: Emerging roles in localization and signal transduction. Cell. Signal. 14, 297–309.

    Article  PubMed  CAS  Google Scholar 

  119. Bockaert J., Marin P., Dumuis A., and Fagni L. (2003) The &quote;magic tail&quote; of Gprotein-coupled receptors: an anchorage for functional protein networks. FEBSLett. 546, 65–72.

    Article  CAS  Google Scholar 

  120. Hall R. A., Premont R. T., Chow C. W., et al. (1998) The beta2-adrenergicreceptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+exchange. Nature 392, 626–630.

    Article  PubMed  CAS  Google Scholar 

  121. Mahon M. J., Donowitz M., Yun C. C., and Segre G. V. (2002) Na(+)/H(+)exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature 417, 858–861.

    Article  PubMed  CAS  Google Scholar 

  122. Mahon M. J. and Segre G. V. (2004) Stimulation by parathyroid hormone of aNHERF-1 assembled complex consisting of the parathyroid hormone I receptor,PLC-beta and actin increases intracellular calcium in OK cells. J. Biol. Chem. 279, 23,550–23,558.

    Article  PubMed  CAS  Google Scholar 

  123. Hu L. A., Tang Y., Miller W. E., et al. (2000) Beta 1-Adrenergic receptor asso-ciationwith PSD-95. Inhibition of receptor internalization and facilitation of beta1-adrenergic receptor interaction with N-methyl-D-aspartate receptors. J. Biol. Chem. 275, 38,659–38,666.

    Article  PubMed  CAS  Google Scholar 

  124. Xu J., Paquet M., Lau A. G., Wood J. D., Ross C. A., and Hall R. A. (2001) Beta 1-Adrenergic receptor association with the synaptic scaffolding proteinmembrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regu-lationof receptor internalization by MAGI-2 and PSD-95. J. Biol. Chem. 276, 41,310–41,317.

    Article  PubMed  CAS  Google Scholar 

  125. Zitzer H., Honck H. H., Bachner D., Richter D., and Kreienkamp H. J. (1999) Somatostatin receptor interacting protein defines a novel family of multidomainproteins present in human and rodent brain. J. Biol. Chem. 274, 32,997–33,001.

    Article  PubMed  CAS  Google Scholar 

  126. Boudin H., Doan A., Xia J., et al. (2000) Presynaptic clustering of mGluR7arequires the PICK1 PDZ domain binding site. Neuron 28, 485–497.

    Article  PubMed  CAS  Google Scholar 

  127. Perroy J., Prezeau L., De Waard M., Shigemoto R., Bockaert J., and Fagni L. (2000) Selective blockade of P/Q-type calcium channels by the metabotropicglutamate receptor type 7 involves a phospholipase C pathway in neurons. J. Neurosci. 20, 7896–7904.

    PubMed  CAS  Google Scholar 

  128. Becamel C., Figge A., Poliak S., et al. (2001) Interaction of serotonin 5-hy-droxytryptaminetype 2C receptors with PDZ10 of the multi-PDZ domain proteinMUPP1. J. Biol. Chem. 276, 12,974–12,982.

    Article  PubMed  CAS  Google Scholar 

  129. Smith F. D., Oxford G. S., and Milgram S. L. (1999) Association of the D2dopamine receptor third cytoplasmic loop with spinophilin, a protein phos-phatase-1-interacting protein. J. Biol. Chem. 274, 19,894–19,900.

    Article  PubMed  CAS  Google Scholar 

  130. Richman J. G., Brady A. E., Wang Q., Hensel J. L., Colbran R. J., and Limbird L. E. (2001) Agonist-regulated Interaction between alpha2-adrenergic receptorsand spinophilin. J. Biol. Chem. 276, 15,003–15,008.

    Article  PubMed  CAS  Google Scholar 

  131. Fagni L., Worley P. F., and Ango F. (2002) Homer as both a scaffold and trans-ductionmolecule. Sci. STKE. 2002(137), RE8.

    Article  PubMed  Google Scholar 

  132. Ciruela F., Soloviev M. M., and McIlhinney R. A. (1999) Co-expression ofmetabotropic glutamate receptor type 1alpha with homer-1a/Vesl-1S increasesthe cell surface expression of the receptor. Biochem. J. 341, 795–803.

    Article  PubMed  CAS  Google Scholar 

  133. Bermak J. C., Li M., Bullock C., and Zhou Q. Y. (2001) Regulation of trans-portof the dopamine D1 receptor by a new membrane-associated ER protein. Nat. Cell Biol. 3, 492–498.

    Article  PubMed  CAS  Google Scholar 

  134. Tai A. W., Chuang J. Z., Bode C., Wolfrum U., and Sung C. H. (1999) Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor forcytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97, 877–887.

    Article  PubMed  CAS  Google Scholar 

  135. Sung C. H., Makino C., Baylor D., and Nathans J. (1994) A rhodopsin genemutation responsible for autosomal dominant retinitis pigmentosa results in a pro-teinthat is defective in localization to the photoreceptor outer segment. J. Neurosci. 14, 5818–5833.

    PubMed  CAS  Google Scholar 

  136. Shih M., Lin F., Scott J. D., Wang H. Y., and Malbon C. C. (1999) Dynamiccomplexes of beta2-adrenergic receptors with protein kinases and phosphatasesand the role of gravin. J. Biol. Chem. 274, 1588–1595.

    Article  PubMed  CAS  Google Scholar 

  137. Fraser I. D., Cong M., Kim J., et al. (2000) Assembly of an A kinase-anchoringprotein-beta(2)-adrenergic receptor complex facilitates receptor phosphorylationand signaling. Curr. Biol. 10, 409–412.

    Article  PubMed  CAS  Google Scholar 

  138. Cong M., Perry S. J., Lin F. T., et al. (2001) Regulation of membrane targetingof the G protein-coupled receptor kinase 2 by protein kinase A and its anchoringprotein AKAP79. J. Biol. Chem. 276, 15,192–15,199.

    Article  PubMed  CAS  Google Scholar 

  139. Lopez-Ilasaca M., Liu X., Tamura K., and Dzau V. J. (2003) The angiotensinII type I receptor-associated protein, ATRAP, is a transmembrane protein and amodulator of angiotensin II signaling. Mol. Biol. Cell. 14, 5038–5050.

    Article  PubMed  CAS  Google Scholar 

  140. O’Connor V., El Far O., Bofill-Cardona E., et al. (1999) Calmodulin depen-denceof presynaptic metabotropic glutamate receptor signaling. Science 286, 1180–1184.

    Article  PubMed  Google Scholar 

  141. Li M., Bermak J. C., Wang Z. W., and Zhou Q. Y. (2000) Modulation of dopa-mineD(2) receptor signaling by actin-binding protein (ABP-280). Mol. Pharmacol. 57, 446–452.

    PubMed  CAS  Google Scholar 

  142. Hasegawa H., Katoh H., Fujita H., Mori K., and Negishi M. (2000) Receptorisoform-specific interaction of prostaglandin EP3 receptor with muskelin. Biochem. Biophys. Res. Commun. 276, 350–354.

    Article  PubMed  CAS  Google Scholar 

  143. Prezeau L., Richman J. G., Edwards S. W., and Limbird L. E. (1999) The zetaisoform of 14-3-3 proteins interacts with the third intracellular loop of differentalpha2-adrenergic receptor subtypes. J. Biol. Chem. 274, 13,462–13,469.

    Article  PubMed  CAS  Google Scholar 

  144. Couve A., Kittler J. T., Uren J. M., et al. (2001) Association of GABA(B) re-ceptorsand members of the 14-3-3 family of signaling proteins. Mol. Cell. Neurosci. 17, 317–328.

    Article  PubMed  CAS  Google Scholar 

  145. Kryiakis J. M., and Avruch J. (1996) Sounding the alarm: Protein kinase cas-cadesactivated by stress and inflammation. J. Biol. Chem. 271, 24,313–24,316.

    Article  Google Scholar 

  146. Pearson G., Robinson F., Beers Gibson T., et al. (2001) Mitogen-activated pro-tein(MAP) kinase pathways: Regulation and physiologic functions. Endocr. Rev. 22, 153–183.

    Article  PubMed  CAS  Google Scholar 

  147. van Biesen T., Hawes B. E., Luttrell D. K., et al. (1995) Receptor-tyrosine-kinase-and Gβγ-mediated MAP kinase activation by a common signalling path-way. Nature 376, 781–784.

    Article  PubMed  Google Scholar 

  148. Luttrell L. M., Hawes B. E., van Biesen T., Luttrell D. K., Lansing T. J., and Lefkowitz R. J. (1996) Role of c-Src in G protein-coupled receptor-and Gβγsubunit-mediated activation of mitogen activated protein kinases. J. Biol. Chem. 271, 19,443–19,450.

    Article  PubMed  CAS  Google Scholar 

  149. Hackel P. O., Zwick E., Prenzel N., and Ullrich A. (1999) Epidermal growthfactor receptors: critical mediators of multiple receptor pathways. Curr. Opin. Cell Biol. 11, 184–189.

    Article  PubMed  CAS  Google Scholar 

  150. Shah B. H., and Catt K. J. (2004) GPCR-mediated transactivation of RTKs inthe CNS: Mechanisms and consequences. Trends Neurosci. 27, 48–53.

    Article  PubMed  CAS  Google Scholar 

  151. Prenzel N., Zwick E., Daub H., et al. (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888.

    PubMed  CAS  Google Scholar 

  152. Schafer B., Gschwind A., and Ullrich A. (2004) Multiple G-protein-coupledreceptor signals converge on the epidermal growth factor receptor to promotemigration and invasion. Oncogene 23, 991–999.

    Article  PubMed  CAS  Google Scholar 

  153. Yart A., Roche S., Wetzker R., et al. (2002) A function for phosphoinositide 3-kinase beta lipid products in coupling beta gamma to Ras activation in responseto lysophosphatidic acid. J. Biol. Chem. 277, 21,167–21,178.

    Article  PubMed  CAS  Google Scholar 

  154. Luttrell L. M., Della Rocca G. J., van Biesen T., Luttrell D. K., and Lefkowitz R. J. (1997) Gβγsubunits mediate Src-dependent phosphorylation of the epider-malgrowth factor receptor. J. Biol. Chem. 272, 4637–4644.

    Article  PubMed  CAS  Google Scholar 

  155. Pierce K. L., Tohgo A., Ahn S., Field M. E., Luttrell L. M., and Lefkowitz R. J. (2001) Epidermal growth factor receptor dependent ERK activation by Gprotein-coupled receptors: A co-culture system for identifying intermediatesupstream and downstream of HB-EGF shedding. J. Biol. Chem. 276, 23,155–23,165.

    Article  PubMed  CAS  Google Scholar 

  156. Asakura M., Kitakaze M., Takashima S., et al. (2002) Cardiac hypertrophy isinhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinaseinhibitors as a new therapy. Nat. Med. 8, 35–40.

    Article  PubMed  CAS  Google Scholar 

  157. Maudsley S., Pierce K. L., Zamah A. M., et al. (2000) The β2-adrenergic recep-tormediates MAP kinase activation via assembly of a multireceptor complexincluding the EGF receptor. J. Biol. Chem. 275, 9572–9580.

    Article  PubMed  CAS  Google Scholar 

  158. Gschwind A., Zwick E., Prenzel N., Leserer M., and Ullrich A. (2001) Cellcommunication networks: epidermal growth factor receptor transactivation asthe paradigm for interreceptor signal transmission. Oncogene 20, 1594–1600.

    Article  PubMed  CAS  Google Scholar 

  159. Murasawa S., Mori Y., Nozawa Y., et al. (1998) Angiotensin II type 1 receptor-inducedextracellular signal-regulated protein kinase activation is mediated byCa2+/calmodulin-dependent transactivation of epidermal growth factor recep-tor. Circ. Res. 82, 1338–1348.

    PubMed  CAS  Google Scholar 

  160. Castagliuolo I., Valenick L., Liu J., and Pothoulakis C. (2000) Epidermalgrowth factor receptor transactivation mediates substance P-induced mitogenicresponses in U-373 MG cells. J. Biol. Chem. 275, 26,545–26,550.

    Article  PubMed  CAS  Google Scholar 

  161. Lev S., Moreno H., Martinez R., et al. (1995) Protein tyrosine kinase PYK2involved in Ca(2+)-induced regulation of ion channel and MAP kinase func-tions. Nature 376, 737–745.

    Article  PubMed  CAS  Google Scholar 

  162. Dikic I., Tokiwa G., Lev S., Courtneidge S. A., and Schlessinger J. (1996) Arole for PYK2 and Src in linking G-protein-coupled receptors with MAP kinaseactivation. Nature 383, 547–550.

    Article  PubMed  CAS  Google Scholar 

  163. Della Rocca G. J., Maudsley S., Daaka Y., Lefkowitz R. J., and Luttrell L. M. (1999) Pleiotropic coupling of G-protein-coupled receptors to the MAP kinasecascade: Role of focal adhesions and receptor tyrosine kinases. J. Biol. Chem. 274, 13,978–13,984.

    Article  PubMed  CAS  Google Scholar 

  164. Grewal J. S., Luttrell L. M., and Raymond J. R. (2001) G protein-coupled re-ceptorsdesensitize and downregulate EGF receptors in renal mesangial cells. J. Biol. Chem. 276, 27,335–27,344.

    Article  PubMed  CAS  Google Scholar 

  165. Pak Y., Pham N., and Rotin D. (2002) Direct binding of the beta1 adrenergicreceptor to the cyclic AMP-dependent guanine nucleotide exchange factorCNrasGEF leads to Ras activation. Mol. Cell. Biol. 22, 7942–7952.

    Article  PubMed  CAS  Google Scholar 

  166. Karoor V. and Malbon C. C. (1998) G-protein-linked receptors as substrates fortyrosine kinases: cross-talk in signaling. Adv. Pharmacol. 42, 425–428.

    Article  PubMed  CAS  Google Scholar 

  167. Ali M. S., Sayeski P. P., Dirksen L. B., Hayzer D. J., Marrero M. B., and Bernstein K. E. (1997) Dependence on the motif YIPP for the physical associa-tionof Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1receptor. J. Biol. Chem. 272, 23,382–23,388.

    Article  PubMed  CAS  Google Scholar 

  168. Marrero M. B., Venema V. J., Ju H., Eaton D. C., and Venema R. C. (1998) Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles ofSHP-1 and SHP-2. Am. J. Physiol. 275, C1216–C1223.

    PubMed  CAS  Google Scholar 

  169. Hunt R. A., Bhat G. J., and Baker K. M. (1999) Angiotensin II-stimulated in-ductionof sis-inducing factor is mediated by pertussis toxin-insensitive G(q) pro-teinsin cardiac myocytes. Hypertension 34, 603–608.

    PubMed  CAS  Google Scholar 

  170. Cao W., Luttrell L. M., Medvedev A. V., et al. (2000) Direct binding of acti-vatedc-Src to the beta 3-adrenergic receptor is required for MAP kinase activa-tion. J. Biol. Chem. 275, 38,131–38,134.

    Article  PubMed  CAS  Google Scholar 

  171. Miller W. E. and Lefkowitz R. J. (2001) Expanding roles for beta-arrestins asscaffolds and adapters in GPCR signaling and trafficking. Curr. Opin. Cell Biol. 13, 139–145.

    Article  PubMed  CAS  Google Scholar 

  172. Perry S. J. and Lefkowitz R. J. (2002) Arresting developments in heptahelicalreceptor signaling and regulation. Trends Cell Biol. 12, 130–138.

    Article  PubMed  CAS  Google Scholar 

  173. Tohgo A., Pierce K. L., Choy E. W., Lefkowitz R. J., and Luttrell L. M. (2002) Beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activitybut inhibits ERK-mediated transcription following angiotensin AT1a receptorstimulation. J. Biol. Chem. 277, 9429–9436.

    Article  PubMed  CAS  Google Scholar 

  174. Ahn S., Wei H., Garrison T. R., and Lefkowitz R. J. (2004) Reciprocal regu-lationof angiotensin receptor-activated extracellular signal-regulated kinases bybeta-arrestins 1 and 2. J. Biol. Chem. 279, 7807–7811.

    Article  PubMed  CAS  Google Scholar 

  175. Azzi M., Charest P. G., Angers S., et al. (2003) Beta-arrestin-mediated activa-tionof MAPK by inverse agonists reveals distinct active conformations for Gprotein-coupled receptors. Proc. Natl. Acad. Sci. USA 100, 11,406–11,411.

    Article  PubMed  CAS  Google Scholar 

  176. DeFea K. A., Zalevsky J., Thoma M. S., Dery O., Mullins R. D., and Bunnett N. W. (2000) β-Arrestin-dependent endocytosis of proteinase-activated receptor2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol. 148, 1267–1281.

    Article  PubMed  CAS  Google Scholar 

  177. Luttrell L. M., Roudabush F. L., Choy E. W., et al. (2001) Activation and tar-getingof extracellular signal-regulated kinases by β-arrestin scaffolds. Proc. Natl. Acad. Sci. USA 98, 2449–2454.

    Article  PubMed  CAS  Google Scholar 

  178. DeFea K. A., Vaughn Z. D., O’Bryan E. M., Nishijima D., Dery O., and Bunnett N. W. (2000) The proliferative and antiapoptotic effects of substance Pare facilitated by formation of a β-arrestin-dependent scaffolding complex. Proc. Natl. Acad. Sci. USA 97, 11,086–11,091.

    Article  PubMed  CAS  Google Scholar 

  179. Scott M. G., Le Rouzic E., Perianin A., et al. (2002) Differential nucleocyto-plasmicshuttling of beta-arrestins. Characterization of a leucine-rich nuclear ex-portsequence in beta-arrestin2. J. Biol. Chem. 277, 37,693–37,701.

    Article  PubMed  CAS  Google Scholar 

  180. Lin F-T., Miller W. E., Luttrell L. M., and Lefkowitz R. J. (1999) Feedbackregulation of beta-arrestin1 function by extracellular signal-regulated kinases. J. Biol. Chem. 274, 15,971–15,974.

    Article  PubMed  CAS  Google Scholar 

  181. Pitcher J. A., Tesmer J. J., Freeman J. L., Capel W. D., Stone W. C., and Lefkowitz R. J. (1999) Feedback inhibition of G protein-coupled receptor ki-nase2 (GRK2) activity by extracellular signal-regulated kinases. J. Biol. Chem. 274, 34,531–34,534.

    Article  PubMed  CAS  Google Scholar 

  182. Ogier-Denis E., Pattingre S., El Benna J., and Codogno P. (2000) Erk1/2-de-pendentphosphorylation of Galpha-interacting protein stimulates its GTPase ac-celeratingactivity and autophagy in human colon cancer cells. J. Biol. Chem. 275, 39,090–39,095.

    Article  PubMed  CAS  Google Scholar 

  183. Elorza A., Penela P., Sarnago S., and Mayor F., Jr. (2003) MAPK-dependentdegradation of G protein-coupled receptor kinase 2. J. Biol. Chem. 278, 29,164–29,173.

    Article  PubMed  CAS  Google Scholar 

  184. Ge L., Ly Y., Hollenberg M., and DeFea K. (2003) A beta-arrestin-dependentscaffold is associated with prolonged MAPK activation in pseudopodia duringprotease-activated receptor-2-induced chemotaxis. J. Biol. Chem. 278, 34,418–34,426.

    Article  PubMed  CAS  Google Scholar 

  185. Fong A. M., Premont R. T., Richardson R. M., Yu Y. R., Lefkowitz R. J., and Patel D. D. (2002) Defective lymphocyte chemotaxis in beta-arrestin2-andGRK6-deficient mice. Proc. Natl. Acad. Sci. USA 99, 7478–7483.

    Article  PubMed  CAS  Google Scholar 

  186. McDonald P. H., Chow C-W., Miller W. E., et al. (2000) β-Arrestin 2: a receptor-regulatedMAPK scaffold for the activation of JNK3. Science 290, 1574–1577.

    Article  PubMed  CAS  Google Scholar 

  187. Miller W. E., McDonald P. H., Cai S. F., Field M. F., Davis R. J., and Lefkowitz R. J. (2001) Identification of a motif in the carboxy terminus of β-arrestin2 responsible for activation of JNK3. J. Biol. Chem. 276, 27,770–27,777.

    Article  PubMed  CAS  Google Scholar 

  188. Sun Y., Cheng Z., Ma L., and Pei G. (2002) Beta-arrestin 2 is critically in-volvedin CXCR4-mediated chemotaxis, and this is mediated by its enhancementof p38 MAPK activation. J. Biol. Chem. 277, 49,212–49,219.

    Article  PubMed  CAS  Google Scholar 

  189. Luttrell L. M., Ferguson S. S. G., Daaka Y., et al. (1999) β-Arrestin-dependentformation of β2 adrenergic receptor/Src protein kinase complexes. Science 283, 655–661.

    Article  PubMed  CAS  Google Scholar 

  190. Barlic J., Andrews J. D., Kelvin A. A., et al. (2000) Regulation of tyrosinekinase activation and granule release through β-arrestin by CXCRI. Nat. Immunol. 1, 227–233.

    Article  PubMed  CAS  Google Scholar 

  191. Ghalayini A. J., Desai N., Smith K. R., Holbrook R. M., Elliott M. H., and Kawakatsu H. (2002) Light-dependent association of Src with photoreceptorrod outer segment membrane proteins in vivo. J. Biol. Chem. 277, 1469–1476.

    Article  PubMed  CAS  Google Scholar 

  192. Milano S. K., Pace H. C., Kim Y. M., Brenner C., and Benovic J. L. (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagen-esis. Biochemistry 41, 3321–3328.

    Article  PubMed  CAS  Google Scholar 

  193. Miller W. E., Maudsley S., Ahn S., Kahn K. D., Luttrell L. M., and Lefkowitz R. J. (2000) β-Arrestin1 interacts with the catalytic domain of the tyrosine kinasec-SRC. J. Biol. Chem. 275, 11,312–11,319.

    Article  PubMed  CAS  Google Scholar 

  194. Ahn S., Kim J., Lucaveche C. L., et al. (2002) Src-dependent tyrosine phospho-rylationregulates dynamin self-assembly and ligand-induced endocytosis of theepidermal growth factor receptor. J. Biol. Chem. 277, 26,642–26,651.

    Article  PubMed  CAS  Google Scholar 

  195. Penela P., Elorza A., Sarnage S., and Mayor F., Jr. (2001) Beta-arrestin and c-Src-dependent degradation of G-protein-coupled receptor kinase 2. EMBO J. 20, 5129–5138.

    Article  PubMed  CAS  Google Scholar 

  196. Imamura T., Huang J., Dalle S., et al. (2001) Beta-Arrestin-mediated recruit-mentof the Src family kinase Yes mediates endothelin-1-stimulated glucosetransport. J. Biol. Chem. 276, 43,663–43,667.

    Article  PubMed  CAS  Google Scholar 

  197. Luttrell L. M. (2003) Location, Location, Location. Spatial and temporal regula-tionof MAP kinases by G protein-coupled receptors. J. Mol. Endocrinol. 30, 117–126.

    Article  PubMed  CAS  Google Scholar 

  198. Yang M., Zhang H., Voyno-Yasenetskaya T., and Ye R. D. (2003) Require-mentof G beta-gamma and c-Src in D2 dopamine receptor-mediated nuclearfactor-kappa B activation. Mol. Pharmacol. 64, 447–455.

    Article  PubMed  CAS  Google Scholar 

  199. Chen W., Hu L. A., Semenov M. V., et al. (2001) Beta-Arrestin1 modulateslymphoid enhancer factor transcriptional activity through interaction with phos-phorylateddishevelled proteins. Proc. Natl. Acad. Sci. USA 98, 14,889–14,894.

    Article  PubMed  CAS  Google Scholar 

  200. Chen W., ten Berge D., Brown J., et al. (2003) Dishevelled 2 recruits beta-arrestin2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301, 1391–1394.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Luttrell, L.M. (2006). Transmembrane Signaling by G Protein-Coupled Receptors. In: Ali, H., Haribabu, B. (eds) Transmembrane Signaling Protocols. Methods in Molecular Biology™, vol 332. Humana Press. https://doi.org/10.1385/1-59745-048-0:1

Download citation

  • DOI: https://doi.org/10.1385/1-59745-048-0:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-546-0

  • Online ISBN: 978-1-59745-048-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics