Proteomic Analysis of Human Neutrophils

  • George Lominadze
  • Richard A. Ward
  • Jon B. Klein
  • Kenneth R. McLeish
Part of the Methods in Molecular Biology™ book series (MIMB, volume 332)

Summary

Proteomics is the study of the set of proteins, or proteome, expressed by a cell under specific conditions. Proteomics methodology consists of protein extraction, protein separation, and protein identification. Currently, two-dimensional gel electrophoresis (2DE) and matrix-assisted laser-desorption ionization time of flight mass spectrometry are the most widespread methods for proteomic studies. The recent introduction of precast immobilized pH gradient gel strips, precast gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, and well-designed electrophoresis equipment has made 2DE a highly reproducible and relatively simple method for protein separation. Inherent limitations of the procedure, however, require approaches in sample preparation that may be cell- or tissue-dependent. This chapter describes a methodology for proteomic analysis of human neutrophils and discusses its applications.

Key Words

Proteomics two-dimensional gel electrophoresis mass spectrometry neutrophils 

References

  1. 1.
    Wilkins M. R., Pasquali C., Appel R. D., et al. (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. BioTechnology 14, 61–65.PubMedCrossRefGoogle Scholar
  2. 2.
    Aebersold R. and Leavitt J. (1990) Sequence analysis of proteins separated by polyacrylamide gel electrophoresis: Towards an integrated protein database. Electrophoresis 11, 517–527.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson N. L. and Anderson N. G. (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19, 1853–1861.PubMedCrossRefGoogle Scholar
  4. 4.
    Klose J. (1999) Genotypes and phenotypes. Electrophoresis 20, 643–652.PubMedCrossRefGoogle Scholar
  5. 5.
    Quadroni M., Staudenmann W., Kertesz M., and James P. (1996) Analysis of global responses by protein and peptide fingerprinting of proteins isolated by two-dimensional gel electrophoresis. Application to the sulfate-starvation response of Escherichia coli. Eur. J. Biochem. 1, 773–881.CrossRefGoogle Scholar
  6. 6.
    O’Farrell P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 50, 4007–4021.Google Scholar
  7. 7.
    Choudhary J. S., Blackstock W. P., Creasy D. M, and Cottrell J. S. (2001) Matching peptide mass spectra to EST and genomic DNA databases. TRENDS Biotech. 19(suppl), S17–S22.CrossRefGoogle Scholar
  8. 8.
    Görg A., Obermaier C., Boguth G., Harder A., Scheibe B., Wildgruber R., and Weiss W. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053.PubMedCrossRefGoogle Scholar
  9. 9.
    Fessler M. B., Malcolm K. C., Duncan M. W., and Worthen S. G. (2002) A genomic and proteomic analysis of activation of the human neutrophil by lipopolysaccharide and its mediation by p38 mitogen-activated protein kinase. J. Biol. Chem. 277, 31,291–31,302.PubMedCrossRefGoogle Scholar
  10. 10.
    Hayakawa T., Suzuki K., Suzuki S., Andrews P., and Babior B. (1986) Possible role of protein phosphorylation in the activation of the respiratory burst in human neutrophils. J. Biol. Chem. 261, 9109–9115.PubMedGoogle Scholar
  11. 11.
    Kaufmann H., Bailey J. E., and Fussenegger M. (2001) Use of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis. Proteomics 1, 194–199.PubMedCrossRefGoogle Scholar
  12. 12.
    Powell D. W., Rane M. J., Joughin B. A., et al. (2003) Proteomic identification of 14-3-3? as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding. Mol. Cell. Biol. 23, 5376–5387.PubMedCrossRefGoogle Scholar
  13. 13.
    Singh S., Powell D. W., Rane M. J., et al. (2003) Identification of the p16 Arc subunit of the Arp2/3 complex as a substrate of MAPK-activated protein kinase 2 by proteomic analysis. J. Biol. Chem. 278, 36,410–36,417.PubMedCrossRefGoogle Scholar
  14. 14.
    Klose J. and Kobalz U. (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16, 1034–1059.PubMedCrossRefGoogle Scholar
  15. 15.
    Schrader M. and Schulz-Knappe P. (2001) Peptidomics technologies for human body fluids. Trends Biotech. 19(Suppl), S55–S60.CrossRefGoogle Scholar
  16. 16.
    Santoni V., Molloy M., and Rabilloud T. (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054–1070.PubMedCrossRefGoogle Scholar
  17. 17.
    Gygi S. P., Rist B., and Aebersold R. (2000) Measuring gene expression by quantitative proteome analysis Curr. Opin. Biotech. 11, 396–401.CrossRefGoogle Scholar
  18. 18.
    Molloy M. (2000) Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Analyt. Biochem. 280, 1–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Yates J. R., III, Carmack E., Hays L., Link A. J., and Eng J. K. (1999) Automated protein identification using microcolumn liquid chromatography-tandem mass spectrometry (review). Methods Mol. Biol. 112, 553–569.PubMedGoogle Scholar
  20. 20.
    Gygi S. P., Rist B., Gerber S. A., Turecek F., Gelb M. H., and Aebersold R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999.PubMedCrossRefGoogle Scholar
  21. 21.
    Moseley M. A. (2001) Current trends in differential expression proteomics: isotopically coded tags. Trends Biotech. 19(suppl), S10–S16.CrossRefGoogle Scholar
  22. 22.
    Ficarro S. B., McCleland M. L., Stukenberg P. T., et al. (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305.PubMedCrossRefGoogle Scholar
  23. 23.
    Nuhse T. S., Stensballe A., Jensen O. N., and Peck S. C. (2003) Large scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 2, 1234–1243.PubMedCrossRefGoogle Scholar
  24. 24.
    Amrein P. C. and Stossel T. P. (1980) Prevention of degradation of human polymorphonuclear leukocyte proteins by diisopropylfluorophosphate. Blood 56, 442–447.PubMedGoogle Scholar
  25. 25.
    Gianazza E. (1995) Isoelectric focusing as a tool for the investigation of posttranslational processing and chemical modifications of proteins. J. Chromatogr. A. 705, 67–87.PubMedCrossRefGoogle Scholar
  26. 26.
    Patton W. F. (2000) A thousand points of light: the application of fluorescence detection technologies to two-dimensional electrophoresis and proteomics. Electrophoresis 21, 1123–1144.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • George Lominadze
    • 1
  • Richard A. Ward
    • 2
  • Jon B. Klein
    • 3
  • Kenneth R. McLeish
    • 4
  1. 1.Biochemistry and Molecular BiologyUniversity of LouisvilleLouisvilleKY
  2. 2.Department of MedicineUniversity of LouisvilleLouisvilleKY
  3. 3.Departments of MedicineUniversity of Louisville, and VA Medical CenterLouisvilleKY
  4. 4.Department of MedicineUniversity of Louisville, and VA Medical CenterLouisvilleKY

Personalised recommendations