Advertisement

Analysis of Global Gene Expression Profiles Activated by Chemoattractant Receptors

  • Fernando O. Martinez
  • Massimo Locati
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 332)

Summary

Microarrays are made by immobilizing to a solid support thousands of DNA probes that detect soluble complementary target sequences using the hybridization pairing rules of nucleic acids. Receptor triggering induces a cascade of signaling events that often involves the modulation of gene expression. In the last decade, the development of microarrays has provided scientists with an innovative tool to interrogate the cell transcriptional profile at a global level and to characterize genes according to their behavior in different conditions. This chapter outlines the use of microarrays as an innovative approach to study the global effect of transmembrane-receptor triggering. The effect of formyl peptides receptors activation on the gene transcriptional program of human monocytes is described as a model.

Key Words

GeneChip Affymetrix transcriptome chemotactic factor G proteincoupled receptor microarray signaling receptor gene expression 

References

  1. 1.
    Lemon B. and Tjian R. (2000) Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14, 2551–2569.PubMedCrossRefGoogle Scholar
  2. 2.
    Emerson B. M. (2002) Specificity of gene regulation. Cell 109, 267–270.PubMedCrossRefGoogle Scholar
  3. 3.
    Brivanlou A. H. and Darnell J. E. Jr. (2002) Signal transduction and the control of gene expression. Science 295, 813–818.PubMedCrossRefGoogle Scholar
  4. 4.
    Boulay F., Tardif M., Brouchon L., and Vignais P. (1990) The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors. Biochemistry 29, 11,123–11,233.PubMedCrossRefGoogle Scholar
  5. 5.
    Murphy P. M. (1994) The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol. 12, 593–633.PubMedCrossRefGoogle Scholar
  6. 6.
    Le Y., Murphy P. M., and Wang J. M. (2002) Formyl-peptide receptors revisited. Trends Immunol. 23, 541–548.PubMedCrossRefGoogle Scholar
  7. 7.
    Arbour N., Tremblay P., and Oth D. (1996) N-formyl-methionyl-leucyl-phenylalanine induces and modulates IL-1 and IL-6 in human PBMC. Cytokine 8, 468–475.PubMedCrossRefGoogle Scholar
  8. 8.
    Southern E., Mir K., and Shchepinov M. (1999) Molecular interactions on microarrays. Nat. Genet. 21, 5–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Nadon R. and Shoemaker J. (2002) Statistical issues with microarrays: processing and analysis. Trends Genet. 18, 265–271.PubMedCrossRefGoogle Scholar
  10. 10.
    Gautier L., Cope L., Bolstad B. M., and Irizarry R. A. (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315.PubMedCrossRefGoogle Scholar
  11. 11.
    Barash Y., Dehan E., Krupsky M., et al. (2004) Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays. Bioinformatics 20, 839–846.PubMedCrossRefGoogle Scholar
  12. 12.
    Lyons-Weiler J., Patel S., and Bhattacharya S. (2003) A classification-based machine learning approach for the analysis of genome-wide expression data. Genome Res. 13, 503–512.PubMedCrossRefGoogle Scholar
  13. 13.
    Liu G., Loraine A. E., Shigeta R., et al. (2003) NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res. 31, 82–86.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Fernando O. Martinez
    • 1
  • Massimo Locati
    • 2
  1. 1.Institute of General PathologyUniversity of MilanMilanItaly
  2. 2.Institute of General PathologyUniversity of MilanMilanItaly

Personalised recommendations