Skip to main content

Culture of Human Embryonic Stem Cells on Human and Mouse Feeder Cells

  • Protocol
Human Embryonic Stem Cell Protocols

Part of the book series: Methods In Molecular Biology ((MIMB,volume 331))

Abstract

This chapter describes the methods we use to maintain and expand undifferentiated human embryonic stem (hES) cells on human and mouse feeder cells. All of the available hES cells have been derived and propagated on primary mouse embryonic fibroblasts as feeder cells that have been mitotically inactivated. We found that hES cells can be successfully cultured on selected human feeder cells, such as marrow stromal cells derived from adult bone marrow and breast skin fibroblasts. Detailed protocols to use human and mouse feeder cells are described here, together with our method to split hES cells by trypsin/ethylenediaminetetraacetic acid-mediated dissociation. We also describe methods we use to characterize hES cells expanded on either human or mouse feeder cells, including alkaline phosphatase staining, immunostaining for cell-surface markers associated with undifferentiated hES cells, and teratoma formation in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson J. A., Itskovitz-Eldor J., Shapiro S. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  2. Reubinoff B. E., Pera M. F., Fong C., Trounson A., and Bongso A. (2000) Embryonic stem lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404.

    Article  PubMed  CAS  Google Scholar 

  3. Cheng L., Hammond H., Ye Z., Zhan X., and Dravid G. (2003) Human adult marrow cells support prolonged expansion of human embryonic stem cells inn culture. Stem Cells 21, 131–142.

    Article  PubMed  CAS  Google Scholar 

  4. Richards M., Fong C. Y., Chan W. K., Wong P. C., and Bongso A. (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20, 933–936.

    Article  PubMed  CAS  Google Scholar 

  5. Amit M., Margulets V., Segev H., et al. (2003) Human feeder layers for human embryonic stem cells. Biol. Reprod. 68, 2150–2156.

    Article  PubMed  CAS  Google Scholar 

  6. Hovatta O., Mikkola M., Gertow K., et al. (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum. Reprod. 18, 1404–1049.

    Article  PubMed  Google Scholar 

  7. Richards M., Fong C. Y., Chan W. K., Wong P. C., and Bongso A. (2002). Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20, 933–936.

    Google Scholar 

  8. Dravid G., Ye Z., Hammond H., et al. (2005) Defining the role of Wnt/bcatenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells Jul 7, e-pub ahead of print.

    Google Scholar 

  9. Berstine E. G., Hooper M. L., Grandchamp S., and Ephrussi B. (1973) Alkaline phosphatase activity in mouse teratoma. Proc. Natl. Acad. Sci. USA 70, 3899–3903.

    Article  PubMed  CAS  Google Scholar 

  10. Andrew P. W., Meyer L. J., Bednarz K. L., and Harris H. (1984) Two monoclonal antibodies recognizing determinants on human embryonal carcinoma cells react specifically with liver isozyme of human alkaline phosphatase. Hybridoma 3, 33–39.

    Article  Google Scholar 

  11. Henderson J. K., Draper J. S., Baillie H. S., et al. (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20, 329–337.

    Article  PubMed  CAS  Google Scholar 

  12. Draper J. S., Pigott C., Thomson J. A., and Andrews P. W. (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J. Anat. 200, 249–258.

    Article  PubMed  CAS  Google Scholar 

  13. Shevinsky L. H., Knowles B. B., Damjanov I., and Solter D. (1982) Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell 30, 697–705.

    Article  PubMed  CAS  Google Scholar 

  14. Solter D. and Knowles B. B. (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA 75, 5565–5569.

    Article  PubMed  CAS  Google Scholar 

  15. Kannagi R., Cochran N. A., Ishigami F., et al. (1983) Stage-specific embryonic antigens (SSEA-3 and-4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 2, 2355–2361.

    PubMed  CAS  Google Scholar 

  16. Xu C., Inokuma M. S., Denham J., et al. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971–974.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Dravid, G., Hammond, H., Cheng, L. (2006). Culture of Human Embryonic Stem Cells on Human and Mouse Feeder Cells. In: Turksen, K. (eds) Human Embryonic Stem Cell Protocols. Methods In Molecular Biology, vol 331. Humana Press. https://doi.org/10.1385/1-59745-046-4:91

Download citation

  • DOI: https://doi.org/10.1385/1-59745-046-4:91

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-497-5

  • Online ISBN: 978-1-59745-046-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics