Skip to main content

Embryonic Stem Cells as a Source of Differentiated Neural Cells for Pharmacological Screens

  • Protocol
Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 329))

  • 2451 Accesses

Abstract

The process of bringing a new pharmacologically active drug to market is laborious, time consuming, and costly. From drug discovery to safety assessment, new methods are constantly sought to develop faster and more efficient procedures to eliminate drugs from further investigation because of their limited effectiveness or high toxicity. Because in vitro cell assays are an important arm of this discovery process, it is therefore somewhat unsurprising that there is an emerging contribution of embryonic stem (ES) cell technology to this area. This technology utilizes the in vitro differentiation of ES cells into somatic cell target populations that, when coupled to the use of “lineage selection” protocols, allows for the production of infinite numbers of pure populations of the desired cells for both bioactivity and toxicological screens. Unlike the use of transformed cell lines, ES-derived cells remain karyotypically normal and therefore better reflect the potential responses of cells in vivo, and when selected are more homogeneous than those obtained using primary cultures. In this chapter we discuss the use of ES cell-derived somatic cells in pharmacological screens, with particular emphasis on neural cells, and describe the methods and protocols associated with the development of ES cell-derived neural cell assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorba T. and Allsopp T. E. (2003) Pharmacological potential of embryonic stem cells. Pharmacol. Res. 47, 269–278.

    Article  CAS  PubMed  Google Scholar 

  2. Lysaght M. J. and Hazlehurst A. L. (2003) Private sector development of stem cell technol-ogy and therapeutic cloning. Tissue Eng. 9, 555–561.

    Article  PubMed  Google Scholar 

  3. Lysaght M. J. and Hazlehurst A. L. (2004) Tissue engineering: the end of the beginning. Tissue Eng. 10, 309–320.

    Article  PubMed  Google Scholar 

  4. Brower V. (1999) Human ES cells: can you build a business around them? Nat. Biotechnol. 17, 139–142.

    Article  CAS  PubMed  Google Scholar 

  5. O’shea K. S. (2001) Neuronal differentiation of mouse embryonic stem cells: lineage selec-tion and forced differentiation paradigms. Blood Cells Mol. Dis. 27, 705–712.

    Article  CAS  Google Scholar 

  6. Mountford P. S. and Smith A. G. (1995) Internal ribosome entry sites and dicistronic RNAs in mammalian transgenesis. Trends Genet. 11, 179–184.

    Article  CAS  PubMed  Google Scholar 

  7. Hopfl G., Gassmann M., and Desbaillets I. (2004) Differentiating embryonic stem cells into embryoid bodies. Methods Mol. Biol. 254, 79–98.

    PubMed  Google Scholar 

  8. Ostenfeld T. and Svendsen C. N. (2003) Recent advances in stem cell neurobiology. Adv. Tech. Stand. Neurosurg. 28, 3–89.

    CAS  PubMed  Google Scholar 

  9. Abe K., Niwa H., Iwase K., et al. (1996) Endoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodies. Exp. Cell Res. 229, 27–34.

    Article  CAS  PubMed  Google Scholar 

  10. Bain G., Kitchens D., Yao M., Huettner J. E., and Gottlieb D. I. (1995) Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357.

    Article  CAS  PubMed  Google Scholar 

  11. Strubing C., Ahnert-Hilger G., Shan J., Wiedenmann B., Hescheler J., and Wobus A. M. (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 53, 275–287.

    Article  CAS  PubMed  Google Scholar 

  12. Fraichard A., Chassande O., Bilbaut G., Dehay C., Savatier P., and Samarut J. (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108, 3181–3188.

    CAS  PubMed  Google Scholar 

  13. Bjorklund L. M. Sanchez-Pernaute R., Chung S., et al. (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA 99, 2344–2349.

    Article  CAS  PubMed  Google Scholar 

  14. Liu S., Qu Y., Stewart T. J., et al. (2000) Embryonic stem cells differentiate into oligoden-drocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl. Acad. Sci. USA 97, 6126–6131.

    Article  CAS  PubMed  Google Scholar 

  15. Okabe S., Forsberg-Nilsson K., Spiro A. C., Segal M., and McKay R. D. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102.

    Article  CAS  PubMed  Google Scholar 

  16. Lendahl U. and McKay R. D. (1990) The use of cell lines in neurobiology. Trends Neurosci. 13, 132–137.

    Article  CAS  PubMed  Google Scholar 

  17. Barberi T., Klivenyi P., Calingasan N. Y., et al. (2003) Neural subtype specification of fer-tilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21, 1200–1207.

    Article  CAS  PubMed  Google Scholar 

  18. Svendsen C. N. and Smith A. G. (1999) New prospects for human stem-cell therapy in the nervous system. Trends Neurosci. 22, 357–364.

    Article  CAS  PubMed  Google Scholar 

  19. Ye W., Shimamura K., Rubenstein J. L., Hynes M. A., and Rosenthal A. (1998) FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766.

    Article  CAS  PubMed  Google Scholar 

  20. Lee S. H., Lumelsky N., Studer L., Auerbach J. M., and McKay R. D. (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679.

    Article  CAS  PubMed  Google Scholar 

  21. Kim J. H., Auerbach J. M., Rodriguez-Gomez J. A., et al. (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418, 50–56.

    Article  CAS  PubMed  Google Scholar 

  22. Wichterle H., Lieberam I., Porter J. A., and Jessell T. M. (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397.

    Article  CAS  PubMed  Google Scholar 

  23. Kawasaki H., Suemori H., Mizuseki K., et al. (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc. Natl. Acad. Sci. USA 99, 1580–1585.

    Article  CAS  PubMed  Google Scholar 

  24. Ying Q. L., Stavridis M., Griffiths D., Li M., and Smith A. (2003) Conversion of embry-onic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186.

    Article  CAS  PubMed  Google Scholar 

  25. Ying Q. L. and Smith A. G. (2003) Defined conditions for neural commitment and differ-entiation. Methods Enzymol. 365, 327–341.

    Article  CAS  PubMed  Google Scholar 

  26. Hemmati-Brivanlou A. and Melton D. (1997) Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88, 13–17.

    Article  CAS  PubMed  Google Scholar 

  27. Wilson S. I. and Edlund T. (2001) Neural induction: toward a unifying mechanism. Nat. Neurosci. 4, 1161–1168.

    Article  CAS  PubMed  Google Scholar 

  28. Schuldiner M., Eiges R., Eden A., et al. (2001) Induced neuronal differentiation of human embryonic stem cells. Brain Res. 913, 201–205.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang S. C., Wernig M., Duncan I. D., Brustle O., and Thomson J. A. (2001) In vitro dif-ferentiationof transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129–1133.

    Article  CAS  PubMed  Google Scholar 

  30. Kehat I., Amit M., Gepstein A., Huber I., Itskovitz-Eldor J., and Gepstein L. (2003) Development of cardiomyocytes from human ES cells. Methods Enzymol. 365, 461–473.

    Article  CAS  PubMed  Google Scholar 

  31. Odorico J. S., Kaufman D. S., and Thomson J. A. (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19, 193–204.

    Article  CAS  PubMed  Google Scholar 

  32. Carpenter M. K., Rosler E., and Rao M. S. (2003) Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells 5, 79–88.

    Article  CAS  PubMed  Google Scholar 

  33. Carpenter M. K., Inokuma M. S., Denham J., Mujtaba T., Chiu C. P., and Rao M. S. (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp. Neurol. 172, 383–397.

    Article  CAS  PubMed  Google Scholar 

  34. Li M., Pevny L., Lovell-Badge R., and Smith A. (1998) Generation of purified neural pre-cursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971–974.

    Article  CAS  PubMed  Google Scholar 

  35. Stavridis M. P. and Smith A. G. (2003) Neural differentiation of mouse embryonic stem cells. Biochem. Soc. Trans. 31, 45–49.

    Article  CAS  PubMed  Google Scholar 

  36. Pelletier J. and Sonenberg N. (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325.

    Article  CAS  PubMed  Google Scholar 

  37. Macejak D. G. and Sarnow P. (1991) Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature 353, 90–94.

    Article  CAS  PubMed  Google Scholar 

  38. Vagner S., Gensac M. C., Maret A., et al. (1995) Alternative translation of human fibrob-last growth factor 2 mRNA occurs by internal entry of ribosomes. Mol. Cell Biol. 15, 35–44.

    CAS  PubMed  Google Scholar 

  39. Teerink H., Voorma H. O., and Thomas A. A. (1995) The human insulin-like growth fac-tor II leader 1 contains an internal ribosomal entry site. Biochim. Biophys. Acta 1264, 403–408.

    PubMed  Google Scholar 

  40. Gan W. and Rhoads R. E. (1996) Internal initiation of translation directed by the 5′-untranslated region of the mRNA for eIF4G, a factor involved in the picornavirus-induced switch from cap-dependent to internal initiation. J. Biol. Chem. 271, 623–626.

    Article  CAS  PubMed  Google Scholar 

  41. Jang S. K., Krausslich H. G., Nicklin M. J., Duke G. M., Palmenberg A. C., and Wimmer E. (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62, 2636–2643.

    CAS  PubMed  Google Scholar 

  42. Jang S. K., Pestova T. V., Hellen C. U., Witherell G. W., and Wimmer E. (1990) Cap-independent translation of picornavirus RNAs: structure and function of the internal riboso-mal entry site. Enzyme 44, 292–309.

    CAS  PubMed  Google Scholar 

  43. Jang S. K. and Wimmer E. (1990) Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cel-lular 57-kD RNA-binding protein. Genes Dev. 4, 1560–1572.

    Article  CAS  PubMed  Google Scholar 

  44. Ghattas I. R., Sanes J. R., and Majors J. E. (1991) The encephalomyocarditis virus inter-nal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol. Cell Biol. 11, 5848–5859.

    CAS  PubMed  Google Scholar 

  45. Molla A., Paul A. V., Schmid M., Jang S. K., and Wimmer E. (1993) Studies on dicistronic polioviruses implicate viral proteinase 2Apro in RNA replication. Virology 196, 739–747.

    Article  CAS  PubMed  Google Scholar 

  46. Yang Q. and Sarnow P. (1997) Location of the internal ribosome entry site in the 5′ non-coding region of the immunoglobulin heavy-chain binding protein (BiP) mRNA: evidence for specific RNA-protein interactions. Nucleic Acids Res. 25, 2800–2807.

    Article  CAS  PubMed  Google Scholar 

  47. Kim D. G., Kang H. M., Jang S. K., and Shin H. S. (1992) Construction of a bifunctional mRNA in the mouse by using the internal ribosomal entry site of the encephalomyocarditis virus. Mol. Cell Biol. 12, 3636–3643.

    CAS  PubMed  Google Scholar 

  48. Mountford P., Zevnik B., Duwel A., et al. (1994) Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc. Natl. Acad. Sci. USA 91, 4303–4307.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao S., Maxwell S., Jimenez-Beristain A., et al. (2004) Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons. Eur. J. Neurosci. 19, 1133–1140.

    Article  PubMed  Google Scholar 

  50. Billon N., Jolicoeur C., Ying Q. L., Smith A., and Raff M. (2002) Normal timing of oligo-dendrocyte development from genetically engineered, lineage-selectable mouse ES cells. J. Cell Sci. 115, 3657–3665.

    Article  CAS  PubMed  Google Scholar 

  51. Mountford P., Nichols J., Zevnik B., O’Brien C., and Smith A. (1998) Maintenance of pluripotential embryonic stem cells by stem cell selection. Reprod. Fertil. Dev. 10, 527–533.

    Article  CAS  PubMed  Google Scholar 

  52. Eiges R. Schuldiner M. Drukker M. Yanuka O. Itskovitz-Eldor J. and Benvenisty N. 2001 Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr. Biol. 11 514–518

    Article  CAS  PubMed  Google Scholar 

  53. Lakics V., Allsopp T., Cluett T., et al. (2003) Mouse embryonic stem cell derived neuronal progenitors as research tools in drug discovery. Conference abstract, Society for Neuroscience 2003, Prog. 28.3.

    Google Scholar 

  54. Chowdhury K., Bonaldo P., Torres M., Stoykova A., and Gruss P. (1997) Evidence for the stochastic integration of gene trap vectors into the mouse germline. Nucleic Acids Res. 25, 1531–1536.

    Article  CAS  PubMed  Google Scholar 

  55. Bonaldo P., Chowdhury K., Stoykova A., Torres M., and Gruss P. (1998) Efficient gene trap screening for novel developmental genes using IRES beta geo vector and in vitro pres-election. Exp. Cell Res. 244, 125–136.

    Article  CAS  PubMed  Google Scholar 

  56. Kozak M. (1989) The scanning model for translation: an update. J. Cell Biol. 108, 229–241.

    Article  CAS  PubMed  Google Scholar 

  57. Turksen K. (2002) Embryonic Stem Cells Methods and Protocols, Methods in Molecular Biology, Vol. 185, Humana Press Totowa, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Mee, P.J., O’Brien, C.M., Thomson, H., van der Sar, S., Lakics, V., Allsopp, T.E. (2006). Embryonic Stem Cells as a Source of Differentiated Neural Cells for Pharmacological Screens. In: Turksen, K. (eds) Embryonic Stem Cell Protocols. Methods in Molecular Biology, vol 329. Humana Press. https://doi.org/10.1385/1-59745-037-5:353

Download citation

  • DOI: https://doi.org/10.1385/1-59745-037-5:353

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-498-2

  • Online ISBN: 978-1-59745-037-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics