Embryonic Stem Cells as a Source of Differentiated Neural Cells for Pharmacological Screens

  • Patrick J. Mee
  • Carmel M. O’Brien
  • Hazel Thomson
  • Sjaak van der Sar
  • Viktor Lakics
  • Timothy E. Allsopp
Part of the Methods in Molecular Biology book series (MIMB, volume 329)


The process of bringing a new pharmacologically active drug to market is laborious, time consuming, and costly. From drug discovery to safety assessment, new methods are constantly sought to develop faster and more efficient procedures to eliminate drugs from further investigation because of their limited effectiveness or high toxicity. Because in vitro cell assays are an important arm of this discovery process, it is therefore somewhat unsurprising that there is an emerging contribution of embryonic stem (ES) cell technology to this area. This technology utilizes the in vitro differentiation of ES cells into somatic cell target populations that, when coupled to the use of “lineage selection” protocols, allows for the production of infinite numbers of pure populations of the desired cells for both bioactivity and toxicological screens. Unlike the use of transformed cell lines, ES-derived cells remain karyotypically normal and therefore better reflect the potential responses of cells in vivo, and when selected are more homogeneous than those obtained using primary cultures. In this chapter we discuss the use of ES cell-derived somatic cells in pharmacological screens, with particular emphasis on neural cells, and describe the methods and protocols associated with the development of ES cell-derived neural cell assays.

Key Words

Bioreactor cellular assay commercialization embryoid body ES cell β-geo high-throughput assay lineage selection monolayer differentiation neural differen-tiation neural stem cell neurogenesis scale-up serum-free media sox-1 stem cell stem cell sciences 


  1. 1.
    Gorba T. and Allsopp T. E. (2003) Pharmacological potential of embryonic stem cells. Pharmacol. Res. 47, 269–278.CrossRefPubMedGoogle Scholar
  2. 2.
    Lysaght M. J. and Hazlehurst A. L. (2003) Private sector development of stem cell technol-ogy and therapeutic cloning. Tissue Eng. 9, 555–561.CrossRefPubMedGoogle Scholar
  3. 3.
    Lysaght M. J. and Hazlehurst A. L. (2004) Tissue engineering: the end of the beginning. Tissue Eng. 10, 309–320.CrossRefPubMedGoogle Scholar
  4. 4.
    Brower V. (1999) Human ES cells: can you build a business around them? Nat. Biotechnol. 17, 139–142.CrossRefPubMedGoogle Scholar
  5. 5.
    O’shea K. S. (2001) Neuronal differentiation of mouse embryonic stem cells: lineage selec-tion and forced differentiation paradigms. Blood Cells Mol. Dis. 27, 705–712.CrossRefGoogle Scholar
  6. 6.
    Mountford P. S. and Smith A. G. (1995) Internal ribosome entry sites and dicistronic RNAs in mammalian transgenesis. Trends Genet. 11, 179–184.CrossRefPubMedGoogle Scholar
  7. 7.
    Hopfl G., Gassmann M., and Desbaillets I. (2004) Differentiating embryonic stem cells into embryoid bodies. Methods Mol. Biol. 254, 79–98.PubMedGoogle Scholar
  8. 8.
    Ostenfeld T. and Svendsen C. N. (2003) Recent advances in stem cell neurobiology. Adv. Tech. Stand. Neurosurg. 28, 3–89.PubMedGoogle Scholar
  9. 9.
    Abe K., Niwa H., Iwase K., et al. (1996) Endoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodies. Exp. Cell Res. 229, 27–34.CrossRefPubMedGoogle Scholar
  10. 10.
    Bain G., Kitchens D., Yao M., Huettner J. E., and Gottlieb D. I. (1995) Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357.CrossRefPubMedGoogle Scholar
  11. 11.
    Strubing C., Ahnert-Hilger G., Shan J., Wiedenmann B., Hescheler J., and Wobus A. M. (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 53, 275–287.CrossRefPubMedGoogle Scholar
  12. 12.
    Fraichard A., Chassande O., Bilbaut G., Dehay C., Savatier P., and Samarut J. (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108, 3181–3188.PubMedGoogle Scholar
  13. 13.
    Bjorklund L. M. Sanchez-Pernaute R., Chung S., et al. (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA 99, 2344–2349.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu S., Qu Y., Stewart T. J., et al. (2000) Embryonic stem cells differentiate into oligoden-drocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl. Acad. Sci. USA 97, 6126–6131.CrossRefPubMedGoogle Scholar
  15. 15.
    Okabe S., Forsberg-Nilsson K., Spiro A. C., Segal M., and McKay R. D. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102.CrossRefPubMedGoogle Scholar
  16. 16.
    Lendahl U. and McKay R. D. (1990) The use of cell lines in neurobiology. Trends Neurosci. 13, 132–137.CrossRefPubMedGoogle Scholar
  17. 17.
    Barberi T., Klivenyi P., Calingasan N. Y., et al. (2003) Neural subtype specification of fer-tilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21, 1200–1207.CrossRefPubMedGoogle Scholar
  18. 18.
    Svendsen C. N. and Smith A. G. (1999) New prospects for human stem-cell therapy in the nervous system. Trends Neurosci. 22, 357–364.CrossRefPubMedGoogle Scholar
  19. 19.
    Ye W., Shimamura K., Rubenstein J. L., Hynes M. A., and Rosenthal A. (1998) FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766.CrossRefPubMedGoogle Scholar
  20. 20.
    Lee S. H., Lumelsky N., Studer L., Auerbach J. M., and McKay R. D. (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim J. H., Auerbach J. M., Rodriguez-Gomez J. A., et al. (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418, 50–56.CrossRefPubMedGoogle Scholar
  22. 22.
    Wichterle H., Lieberam I., Porter J. A., and Jessell T. M. (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397.CrossRefPubMedGoogle Scholar
  23. 23.
    Kawasaki H., Suemori H., Mizuseki K., et al. (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc. Natl. Acad. Sci. USA 99, 1580–1585.CrossRefPubMedGoogle Scholar
  24. 24.
    Ying Q. L., Stavridis M., Griffiths D., Li M., and Smith A. (2003) Conversion of embry-onic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186.CrossRefPubMedGoogle Scholar
  25. 25.
    Ying Q. L. and Smith A. G. (2003) Defined conditions for neural commitment and differ-entiation. Methods Enzymol. 365, 327–341.CrossRefPubMedGoogle Scholar
  26. 26.
    Hemmati-Brivanlou A. and Melton D. (1997) Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88, 13–17.CrossRefPubMedGoogle Scholar
  27. 27.
    Wilson S. I. and Edlund T. (2001) Neural induction: toward a unifying mechanism. Nat. Neurosci. 4, 1161–1168.CrossRefPubMedGoogle Scholar
  28. 28.
    Schuldiner M., Eiges R., Eden A., et al. (2001) Induced neuronal differentiation of human embryonic stem cells. Brain Res. 913, 201–205.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang S. C., Wernig M., Duncan I. D., Brustle O., and Thomson J. A. (2001) In vitro dif-ferentiationof transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129–1133.CrossRefPubMedGoogle Scholar
  30. 30.
    Kehat I., Amit M., Gepstein A., Huber I., Itskovitz-Eldor J., and Gepstein L. (2003) Development of cardiomyocytes from human ES cells. Methods Enzymol. 365, 461–473.CrossRefPubMedGoogle Scholar
  31. 31.
    Odorico J. S., Kaufman D. S., and Thomson J. A. (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19, 193–204.CrossRefPubMedGoogle Scholar
  32. 32.
    Carpenter M. K., Rosler E., and Rao M. S. (2003) Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells 5, 79–88.CrossRefPubMedGoogle Scholar
  33. 33.
    Carpenter M. K., Inokuma M. S., Denham J., Mujtaba T., Chiu C. P., and Rao M. S. (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp. Neurol. 172, 383–397.CrossRefPubMedGoogle Scholar
  34. 34.
    Li M., Pevny L., Lovell-Badge R., and Smith A. (1998) Generation of purified neural pre-cursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971–974.CrossRefPubMedGoogle Scholar
  35. 35.
    Stavridis M. P. and Smith A. G. (2003) Neural differentiation of mouse embryonic stem cells. Biochem. Soc. Trans. 31, 45–49.CrossRefPubMedGoogle Scholar
  36. 36.
    Pelletier J. and Sonenberg N. (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325.CrossRefPubMedGoogle Scholar
  37. 37.
    Macejak D. G. and Sarnow P. (1991) Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature 353, 90–94.CrossRefPubMedGoogle Scholar
  38. 38.
    Vagner S., Gensac M. C., Maret A., et al. (1995) Alternative translation of human fibrob-last growth factor 2 mRNA occurs by internal entry of ribosomes. Mol. Cell Biol. 15, 35–44.PubMedGoogle Scholar
  39. 39.
    Teerink H., Voorma H. O., and Thomas A. A. (1995) The human insulin-like growth fac-tor II leader 1 contains an internal ribosomal entry site. Biochim. Biophys. Acta 1264, 403–408.PubMedGoogle Scholar
  40. 40.
    Gan W. and Rhoads R. E. (1996) Internal initiation of translation directed by the 5′-untranslated region of the mRNA for eIF4G, a factor involved in the picornavirus-induced switch from cap-dependent to internal initiation. J. Biol. Chem. 271, 623–626.CrossRefPubMedGoogle Scholar
  41. 41.
    Jang S. K., Krausslich H. G., Nicklin M. J., Duke G. M., Palmenberg A. C., and Wimmer E. (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62, 2636–2643.PubMedGoogle Scholar
  42. 42.
    Jang S. K., Pestova T. V., Hellen C. U., Witherell G. W., and Wimmer E. (1990) Cap-independent translation of picornavirus RNAs: structure and function of the internal riboso-mal entry site. Enzyme 44, 292–309.PubMedGoogle Scholar
  43. 43.
    Jang S. K. and Wimmer E. (1990) Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cel-lular 57-kD RNA-binding protein. Genes Dev. 4, 1560–1572.CrossRefPubMedGoogle Scholar
  44. 44.
    Ghattas I. R., Sanes J. R., and Majors J. E. (1991) The encephalomyocarditis virus inter-nal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol. Cell Biol. 11, 5848–5859.PubMedGoogle Scholar
  45. 45.
    Molla A., Paul A. V., Schmid M., Jang S. K., and Wimmer E. (1993) Studies on dicistronic polioviruses implicate viral proteinase 2Apro in RNA replication. Virology 196, 739–747.CrossRefPubMedGoogle Scholar
  46. 46.
    Yang Q. and Sarnow P. (1997) Location of the internal ribosome entry site in the 5′ non-coding region of the immunoglobulin heavy-chain binding protein (BiP) mRNA: evidence for specific RNA-protein interactions. Nucleic Acids Res. 25, 2800–2807.CrossRefPubMedGoogle Scholar
  47. 47.
    Kim D. G., Kang H. M., Jang S. K., and Shin H. S. (1992) Construction of a bifunctional mRNA in the mouse by using the internal ribosomal entry site of the encephalomyocarditis virus. Mol. Cell Biol. 12, 3636–3643.PubMedGoogle Scholar
  48. 48.
    Mountford P., Zevnik B., Duwel A., et al. (1994) Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc. Natl. Acad. Sci. USA 91, 4303–4307.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhao S., Maxwell S., Jimenez-Beristain A., et al. (2004) Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons. Eur. J. Neurosci. 19, 1133–1140.CrossRefPubMedGoogle Scholar
  50. 50.
    Billon N., Jolicoeur C., Ying Q. L., Smith A., and Raff M. (2002) Normal timing of oligo-dendrocyte development from genetically engineered, lineage-selectable mouse ES cells. J. Cell Sci. 115, 3657–3665.CrossRefPubMedGoogle Scholar
  51. 51.
    Mountford P., Nichols J., Zevnik B., O’Brien C., and Smith A. (1998) Maintenance of pluripotential embryonic stem cells by stem cell selection. Reprod. Fertil. Dev. 10, 527–533.CrossRefPubMedGoogle Scholar
  52. 52.
    Eiges R. Schuldiner M. Drukker M. Yanuka O. Itskovitz-Eldor J. and Benvenisty N. 2001 Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr. Biol. 11 514–518CrossRefPubMedGoogle Scholar
  53. 53.
    Lakics V., Allsopp T., Cluett T., et al. (2003) Mouse embryonic stem cell derived neuronal progenitors as research tools in drug discovery. Conference abstract, Society for Neuroscience 2003, Prog. 28.3.Google Scholar
  54. 54.
    Chowdhury K., Bonaldo P., Torres M., Stoykova A., and Gruss P. (1997) Evidence for the stochastic integration of gene trap vectors into the mouse germline. Nucleic Acids Res. 25, 1531–1536.CrossRefPubMedGoogle Scholar
  55. 55.
    Bonaldo P., Chowdhury K., Stoykova A., Torres M., and Gruss P. (1998) Efficient gene trap screening for novel developmental genes using IRES beta geo vector and in vitro pres-election. Exp. Cell Res. 244, 125–136.CrossRefPubMedGoogle Scholar
  56. 56.
    Kozak M. (1989) The scanning model for translation: an update. J. Cell Biol. 108, 229–241.CrossRefPubMedGoogle Scholar
  57. 57.
    Turksen K. (2002) Embryonic Stem Cells Methods and Protocols, Methods in Molecular Biology, Vol. 185, Humana Press Totowa, NJ.Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Patrick J. Mee
    • 1
  • Carmel M. O’Brien
    • 2
  • Hazel Thomson
    • 3
  • Sjaak van der Sar
    • 4
  • Viktor Lakics
    • 5
  • Timothy E. Allsopp
    • 6
  1. 1.Stem Cell Sciences Ltd.University of EdinburghEdinburghUK
  2. 2.Stem Cell Sciences Ltd.Melbourne, VictoriaAustralia
  3. 3.Stem Cell Sciences Ltd.University of EdinburghEdinburghUK
  4. 4.Stem Cell Sciences Ltd.University of EdinburghEdinburghUK
  5. 5.Eli Lilly and Company Ltd.Erl Wood Manor, SurreyUK
  6. 6.Stem Cell Sciences Ltd.University of EdinburghEdinburghUK

Personalised recommendations