Advertisement

Matrix Assembly, Cell Polarization, and Cell Survival

Analysis of Peri-Implantation Development With Cultured Embryonic Stem Cells
  • Shaohua Li
  • Peter D. Yurchenco
Part of the Methods in Molecular Biology book series (MIMB, volume 329)

Abstract

A variety of mutations, including those affecting laminin expression and basement mem-brane, cause early embryonic lethality in the peri-implantation period. However, low cell numbers and inaccessibility of these small embryos make it difficult to study the molecular mechanisms that underlie these defects. Embryoid bodies cultured as suspended spherical cell aggregates derived from normal and defective embryonic stem cells provide a tractable experimental system with which the early developmental processes can be recapitulated under defined conditions. Thus, endoderm formation and maturation, basement membrane assembly and its signaling consequences, epiblast polarization, apoptosis, and cavitation can be studied using a combination of genetic, biochemical, cell, and molecular biology approaches.

Key Words

Anoikis basement membrane basal lamina ectoderm embryoid body embryonic development endoderm epiblast epithelial laminin type IV collagen 

References

  1. 1.
    Li S., Harrison D., Carbonetto S., et al. (2002) Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. J. Cell Biol. 157, 1279–1290.CrossRefPubMedGoogle Scholar
  2. 2.
    Pöschl E., Schlotzer-Schrehardt U., Brachvogel B., Saito K., Ninomiya Y., and Mayer U. (2004) Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131, 1619–1628.CrossRefPubMedGoogle Scholar
  3. 3.
    Li S., Edgar D., Fässler R., Wadsworth W., and Yurchenco P. D. (2003) The role of laminin in embryonic cell polarization and tissue organization. Dev. Cell 4, 613–624.CrossRefPubMedGoogle Scholar
  4. 4.
    Leivo I., Vaheri A., Timpl R., and Wartiovaara J. (1980) Appearance and distribution of collagens and laminin in the early mouse embryo. Dev. Biol. 76, 100–114.CrossRefPubMedGoogle Scholar
  5. 5.
    Smyth N., Vatansever H. S., Murray P., et al. (1999) Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J. Cell Biol. 144, 151–160.CrossRefPubMedGoogle Scholar
  6. 6.
    Miner J. H., Li C., Mudd J. L., Go G., and Sutherland A. E. (2004) Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development 131, 2247–2256.CrossRefPubMedGoogle Scholar
  7. 7.
    Sakai T., Li S., Docheva D., et al. (2003) Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes Dev. 17, 926–940.CrossRefPubMedGoogle Scholar
  8. 8.
    Yurchenco P. D. and Furthmayr H. (1984) Self-assembly of basement membrane collagen. Biochemistry 23, 1839–1850.CrossRefPubMedGoogle Scholar
  9. 9.
    Yurchenco P. D., Cheng Y. S., and Colognato H. (1992) Laminin forms an independent network in basement membranes. J. Cell. Biol. 117, 1119–1133.CrossRefPubMedGoogle Scholar
  10. 10.
    Murray P. and Edgar D. (2000) Regulation of programmed cell death by basement membranes in embryonic development. J. Cell Biol. 150, 1215–1221.CrossRefPubMedGoogle Scholar
  11. 11.
    Aumailley M., Pesch M., Tunggal L., Gaill F., and Fässler R. (2000) Altered synthesis of laminin 1 and absence of basement membrane component deposition in β-1 integrindeficient embryoid bodies. J. Cell Sci. 113, 259–268.PubMedGoogle Scholar
  12. 12.
    Li X., Chen Y., Scheele S., et al. (2001) Fibroblast growth factor signaling and basement membrane assembly are connected during epithelial morphogenesis of the embryoid body. J. Cell Biol. 153, 811–822.CrossRefPubMedGoogle Scholar
  13. 13.
    Joza N., Susin S. A., Daugas E., et al. (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549–554.CrossRefPubMedGoogle Scholar
  14. 14.
    Choi K., Kennedy M., Kazarov A., et al. (1998) A common precursor for hematopoietic and endothelial cells. Development 125, 725–732.PubMedGoogle Scholar
  15. 15.
    Kennedy M., Firpo M., Choi K., et al. (1997) A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 386, 488–493.CrossRefPubMedGoogle Scholar
  16. 16.
    Yurchenco P. D. and Cheng Y. S. (1993) Self-assembly and calcium-binding sites in laminin. A three-arm interaction model. J. Biol. Chem. 268, 17,286–17,299.PubMedGoogle Scholar
  17. 17.
    Colognato H., Winkelmann D. A., and Yurchenco P. D. (1999) Laminin polymerization induces a receptor-cytoskeleton network. J. Cell Biol. 145, 619–631.CrossRefPubMedGoogle Scholar
  18. 18.
    Cheng Y. S., Champliaud M. F., Burgeson R. E., Marinkovich M. P., and Yurchenco P. D. (1997) Self-assembly of laminin isoforms. J. Biol. Chem. 272, 31,525–31,532.CrossRefPubMedGoogle Scholar
  19. 19.
    Ervasti J. M. and Campbell K. P. (1991) Membrane organization of the dystrophinglycoprotein complex. Cell 66, 1121–1131.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Shaohua Li
    • 1
  • Peter D. Yurchenco
    • 2
  1. 1.Department of Pathology and Laboratory MedicineUMDNJRobert Wood Johnson Medical SchoolPiscataway
  2. 2.Department of Pathology and Laboratory MedicineUMDNJ-Robert Wood Johnson Medical SchoolPiscataway

Personalised recommendations