Skip to main content

Differentiation of Rhesus Monkey Embryonic Stem Cells in Three-Dimensional Collagen Matrix

  • Protocol
Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 330))

Abstract

During normal embryogenesis, embryonic stem cells (ESCs) reside in the context of complex three-dimensional tissue structures, in particular of extracellular matrices (ECMs), which determine cell migration, proliferation, and differentiation. Therefore, to study ESC differentiation in an in vivo-like microenvironment, three-dimensional culture systems are necessary. Here, we developed protocols for ESC cultures in three-dimensional systems consisting of collagen matrices (collagen gels and porous collagen sponges) to investigate the mechanisms of ESC differentiation as well as the formation of tissue-like structures. In collagen matrices, ESCs differentiate into neural, epithelial, and endothelial lineages. In this system, ESCs form various tissue-like structures. The abilities of ESCs to form such structures in two chemically similar but topologically different matrices are different. In particular, in collagen gels ESCs form gland-like circular structures, whereas in collagen sponges ESCs are scattered through the matrix and form aggregates. To mimic the in vivo situation further, we developed a protocol for co-cultures of ESCs with human dermal fibroblasts or keratinocytes in collagen matrixes. Co-culture with fibroblasts in collagen gel facilitates ESC differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule (NCAM), and class III β-tubulin. In collagen sponges, keratinocytes facilitated ESC differentiation into cells of an endothelial lineage expressing factor VIII. Thus, the developed protocols promote ESC differentiation into a particular lineage, accompanied by the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for directing ESC differentiation and the formation of organs and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson J. A., Marshall V. S., and Trojanowski J. Q. (1998) Neural differentiation of rhesus embryonic stem cells. APMIS 106, 149–156.

    Article  CAS  PubMed  Google Scholar 

  2. Jacobson L., Kahan B., Djamali A., Thomson J., and Odorico J. S. (2001) Transplant Proc. 33, 674.

    Article  CAS  PubMed  Google Scholar 

  3. Hay E. D. (1991) Collagen and other matrix glycoproteins in embryogenesis. In Cell Biology of Extracellular Matrix (Hay E., ed.), Plenum Press, New York, pp. 419–462.

    Google Scholar 

  4. Vukicevic S., Kleinman H. K., Luyten F. P., Roberts A. B., Roche N. S., and Reddi A. H. (1992) Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202, 1–8.

    Article  CAS  PubMed  Google Scholar 

  5. Thomson J. A. and Marshall V. S. (1998) Primate embryonic stem cells. Curr. Top. Dev. Biol. 38, 133–165.

    Article  CAS  PubMed  Google Scholar 

  6. Hockfield S. and McKay R. D. (1985) Identification of major cell classes in the developing mammalian nervous system. J. Neurosci. 5, 3310–3328.

    CAS  PubMed  Google Scholar 

  7. Rutishauser U. and Jessell T. M. (1988) Cell adhesion molecules in vertebrate neural development. Physiol. Rev. 68, 819–857.

    CAS  PubMed  Google Scholar 

  8. Lee M. K., Tuttle J. B., Rebhun L. I., Cleveland D. W., and Frankfurter A. (1990) The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil. Cytoskeleton 17, 118–132.

    Article  CAS  PubMed  Google Scholar 

  9. Moody S. A., Miller V., Spanos A., and Frankfurter A. (1996) Developmental expression of a neuron-specific beta-tubulin in frog (Xenopus laevis): a marker for growing axons during the embryonic period. J. Comp. Neurol. 364, 219–230.

    Article  CAS  PubMed  Google Scholar 

  10. Woodcock-Mitchell J., Eichner R., Nelson, W. G., and Sun T. T. (1982) Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J. Cell Biol. 95, 580–588.

    Article  CAS  PubMed  Google Scholar 

  11. Gerdes J., Lemke H., Baisch H., Wacker H. H., Schwab U., and Stein H. (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 133, 1710–1715.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Chen, S.S., Revoltella, R.P., Zimmerberg, J., Margolis, L. (2006). Differentiation of Rhesus Monkey Embryonic Stem Cells in Three-Dimensional Collagen Matrix. In: Turksen, K. (eds) Embryonic Stem Cell Protocols. Methods in Molecular Biology™, vol 330. Humana Press. https://doi.org/10.1385/1-59745-036-7:431

Download citation

  • DOI: https://doi.org/10.1385/1-59745-036-7:431

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-784-6

  • Online ISBN: 978-1-59745-036-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics