Skip to main content

Derivation and Characterization of Gut-Like Structures From Embryonic Stem Cells

  • Protocol
Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 330))

  • 1485 Accesses

Abstract

Embryonic stem (ES) cells have a pluripotent ability to differentiate into a variety of cell lineages of all three embryonic germ layers in vitro. The hanging drop culture of ES cell suspension in the absence of leukemia inhibitory factor induces aggregation and differentiation of the cells into simple or cystic embryoid bodies (EBs). After 6 d of hanging drop culture, the resulting EBs are plated onto plastic dishes for the outgrowth culture. At d 21 after outgrowth culture, cell populations of EBs can give rise to three-dimensional gut-like structures that exhibit spontaneous contraction and highly coordinated peristalsis. The gutlike structures have large lumens surrounded by three layers: epithelium, lamina propria, and muscularis. Ganglia are scattered along the periphery, and interstitial cells of Cajal are distributed among the smooth muscle cells. The fundamental process of formation of the in vitro organized gut-like structures is similar to embryonic gastrointestinal development in vivo. The EBs at the 6-d egg-cylinder stage may have the potential to regulate developmental programs associated with cell lineage commitment and provide an appropriate microenvironment to differentiate ES cells into enteric derivatives of all three embryonic germ layers and reproduce the gut organization process in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ward S. M., Burns A. J., Torihashi S., et al. (1994) Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J. Physiol. 480, 91–97.

    CAS  PubMed  Google Scholar 

  2. Huizinga J. D., Thuneberg L., Kluppel M., et al. (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373, 347–349.

    Article  CAS  PubMed  Google Scholar 

  3. Sanders K. M. (1996) A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111, 492–515.

    Article  CAS  PubMed  Google Scholar 

  4. Torihashi S., Ward S. M., and Sanders K. M. (1997) Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology 112, 144–155.

    Article  CAS  PubMed  Google Scholar 

  5. Thomsen L., Robinson T. L., Lee J. C., et al. (1998) Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat. Med. 4, 848–851.

    Article  CAS  PubMed  Google Scholar 

  6. Costa M., Hennig G. W., and Brookes S. J. (1998) Intestinal peristalsis: a mammalian motor pattern controlled by enteric neural circuits. Ann. N. Y. Acad. Sci. 860, 464–466.

    Article  CAS  PubMed  Google Scholar 

  7. Gershon M. D. (1998) Genes, lineages, and tissue interactions in the development of the enteric nervous system. Am. J. Physiol. 275, G869–G873.

    CAS  PubMed  Google Scholar 

  8. Wood J. D., Alpers D. H., and Andrews P. L. (1999) Fundamentals of neurogastroenterology. Gut 45, II6–II16.

    Article  PubMed  Google Scholar 

  9. Gershon M. D. (1999) Lessons from genetically engineered animal models. II. Disorders of enteric neuronal development: insights from transgenic mice. Am. J. Physiol. 277, G262–G267.

    CAS  PubMed  Google Scholar 

  10. Rumessen J. J. (1996) Ultrastructure of interstitial cells of Cajal at the colonic submuscular border in patients with ulcerative colitis. Gastroeterology 111, 1447–1455.

    Article  CAS  Google Scholar 

  11. Vanderwinden J. M. and Rumessen J. J. (1999) Interstitial cells of Cajal in human gut and gastrointestinal disease. Microsc. Res. Tech. 47, 344–360.

    Article  CAS  PubMed  Google Scholar 

  12. Der T., Bercik P., Donnelly G., et al. (2000) Interstitial cells of Cajal and inflammationinduced motor dysfunction in the mouse small intestine. Gastroenterology 119, 1590–1599.

    Article  CAS  PubMed  Google Scholar 

  13. Evans M. J. and Kaufman M. H. (1981) Establishment in culture of pluripotent cells from mouse embryos. Nature 292, 154–156.

    Article  CAS  PubMed  Google Scholar 

  14. Martin G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.

    Article  CAS  PubMed  Google Scholar 

  15. Robertson E. J. (1987) Embryo-derived stem cell lines, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, 1st ed. (Robertson, E. J., ed.), IRL Press, Washington, DC, pp. 71–112.

    Google Scholar 

  16. Keller G. M. (1995) In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862–869.

    Article  CAS  PubMed  Google Scholar 

  17. Troy T. C. and Turksen K. (2000) Epidermal lineage, in Methods in Molecular Biology, Embryonic Stem Cells: Methods and Protocols, Vol. 185 (Turksen K., ed.), Humana Press, Totowa, NJ, pp. 229–253.

    Google Scholar 

  18. Potocnik A. J., Kohler H., and Eichmann K. (1997) Hemato-lymphoid in vivo reconstitution potential of subpopulations derived from in vitro differentiated embryonic stem cells. Proc. Natl. Acad. Sci. USA 94, 10,295–10,300.

    Article  CAS  PubMed  Google Scholar 

  19. Ling V. and Neben S. (1997) In vitro differentiation of embryonic stem cells: immunophenotypic analysis of cultured embryoid bodies. J. Cell Physiol. 171, 104–115.

    Article  CAS  PubMed  Google Scholar 

  20. Klug M. G., Soonpaa M. H., Koh G. Y., et al. (1996) Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216–224.

    Article  CAS  PubMed  Google Scholar 

  21. Ng W. A., Doetschman T., Robbins J., et al. (1997) Muscle isoactin expression during in vitro differentiation of murine embryonic stem cells. Pediatr. Res. 41, 285–292.

    Article  CAS  PubMed  Google Scholar 

  22. Drab M., Haller H., Bychkov R., et al. (1997) From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. FASEB J. 11, 905–915.

    CAS  PubMed  Google Scholar 

  23. Bain G., Kitchens D., Yao M., et al. (1995) Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357.

    Article  CAS  PubMed  Google Scholar 

  24. Brustle O., Jones K. N., Learish R. D., et al. (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756.

    Article  CAS  PubMed  Google Scholar 

  25. McDonald J. W., Liu X. Z., Qu Y., et al. (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 12, 1410–1412.

    Article  Google Scholar 

  26. Lee S.-H., Lumelsky N., Studer L., et al. (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679.

    Article  CAS  PubMed  Google Scholar 

  27. Lumelsky N., Blondel O., Laeng P., et al. (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394.

    Article  CAS  PubMed  Google Scholar 

  28. Yamada T., Yoshikawa M., Takaki M., et al. (2002) In vitro functional gut-like organ formation from mouse embryonic stem cells. Stem Cells 20, 41–49.

    Article  PubMed  Google Scholar 

  29. Kuwahara M., Ogaeri T., Matsuura R., Kogo H., Fujimoto T., and Torihashi S. (2004) In vitro organogenesis of gut-like structures from mouse embryonic stem cells. Neurogastroenterol. Motil. 16, 14–18.

    Article  PubMed  Google Scholar 

  30. Ishikawa T., Nakayama S., Nakagawa T., et al. (2004) Characterization of in vitro gutlike organ formed from mouse embryonic stem cells. Am. J. Physiol. Cell Physiol. 286, C1344–C1352.

    Article  CAS  PubMed  Google Scholar 

  31. Niwa H., Miyazaki J., and Smith A. G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376.

    Article  CAS  PubMed  Google Scholar 

  32. Hooper M., Hardy K., Handyside A., et al. (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295.

    Article  CAS  PubMed  Google Scholar 

  33. Abe K., Niwa H., Iwase K., et al. (1996) Endoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodies. Exp. Cell Res. 229, 27–34.

    Article  CAS  PubMed  Google Scholar 

  34. Hogan B., Beddington R., Costantini F., et al. (1994) Summary of mouse development, in Manipulating the Mouse Embryo, 2nd ed. (Hogan B., Beddington R., and Costantini F., et al., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 19–105.

    Google Scholar 

  35. Liu L. W., Thuneberg L., and Huizinga J. D. (1994) Selective lesioning of interstitial cells of Cajal by methylene blue and light leads to loss of slow waves. Am. J. Physiol. 266, G485–G496.

    CAS  PubMed  Google Scholar 

  36. Torihashi S., Ward S. M., Nishikawa S., et al. (1995) c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 280, 97–111.

    CAS  PubMed  Google Scholar 

  37. Ward S. M., Burns A. J., Torihashi S., et al. (1995) Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants. Am. J. Physiol. 269, C1577–C1585.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Yamada, T., Nakajima, Y. (2006). Derivation and Characterization of Gut-Like Structures From Embryonic Stem Cells. In: Turksen, K. (eds) Embryonic Stem Cell Protocols. Methods in Molecular Biology™, vol 330. Humana Press. https://doi.org/10.1385/1-59745-036-7:263

Download citation

  • DOI: https://doi.org/10.1385/1-59745-036-7:263

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-784-6

  • Online ISBN: 978-1-59745-036-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics