Skip to main content

MALDI-MS Data Analysis for Disease Biomarker Discovery

  • Protocol
New and Emerging Proteomic Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 328))

Abstract

In this chapter, we address the issue of matrix-assisted laser desorption/ionization mass spectrometry (MS) data analysis for disease biomarker discovery. We first give a general framework of MS data analysis, then focus on several key steps. After that, we show some application examples using an ovarian sera cancer dataset. Finally, we discuss the limitations of current approaches and possible future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu B., Abbott T., Fishman D., et al. (2003) Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19,1636–1643.

    Article  PubMed  CAS  Google Scholar 

  2. Petricoin III, E., Ardekani A. M., Hitt B. A., et al. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306), 572–577.

    Article  PubMed  CAS  Google Scholar 

  3. Torgrip R., Aberg M., Karlberg B., and Jacobsson S. (2003) Peak alignment using reduced set mapping. J. Chemomet. 17, 573–582.

    Article  CAS  Google Scholar 

  4. Eilers P. (2004) Parametric time warping. Anal. Chem. 76, 404–411.

    Article  PubMed  CAS  Google Scholar 

  5. Tibshirani R., Hastie T., Narasimhan B., et al. (2004) Sample classification from protein mass spectrometry, by &quote;peak probability contrasts.&quote; Bioinformatics 20(17), 3034–3044.

    Article  PubMed  CAS  Google Scholar 

  6. Coombes K., Fritsche, Jr H., Clarke C., et al. (2003) Qualitycontrol and peak finding for proteomics data collected from nipple aspirate fluid by surfaceenhanced laser desorption and ionization. Clin. Chem. 49, 1615–1623.

    Article  PubMed  CAS  Google Scholar 

  7. Yasui Y., Pepe M., Thompson M., et al. (2003) A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics 4(3), 449–463.

    Article  PubMed  Google Scholar 

  8. Yasui Y., McLerran D., Adam B., Winget M., Thornquist M., and Feng Z. (2003) An automated peak identification/calibration procedure for high-dimensional protein measures from mass spectrometers. J. Biomed. Biotechnol. 4, 242–248.

    Article  Google Scholar 

  9. Randolph T. and Yasui Y. (2004) Multiscale processing of mass spectrometry data, in University of Washington Biostatistics Working Paper Series, Number 230.

    Google Scholar 

  10. Johnson K., Wright B., Jarman K., and Synovec R. (2003) High-speed peak matching algorithm for retention time alignment of gas chromatographic data for chemometric analysis. J. Chromatog. A 996, 141–155.

    Article  CAS  Google Scholar 

  11. Yu W., Wu B., Lin N., Stone K., Williams K., and Zhao H. (2005) Detecting and aligning peaks in mass spectrometry data with applications to MALDI. Comp. Biol. Chem., in press.

    Google Scholar 

  12. Nielsen N., Carstensen J., and Smedsgaard J. (1998) Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J. Chromatog. A 805, 17–35.

    Article  CAS  Google Scholar 

  13. Aach J. and Church G. (2001) Aligning gene expression time series with time warping algorithms. Bioinformatics 17, 495–508.

    Article  PubMed  CAS  Google Scholar 

  14. Granlund G. H. and Knutsson H. (1995) Signal Processing for Computer Vision. Kluwer Academic Publishers.

    Google Scholar 

  15. Breen E., Hopwood F., Williams K., and Wilkins M. (2000) Automatic Poisson peak harvesting for high throughput protein identification. Electrophoresis 21, 2243–2251.

    Article  PubMed  CAS  Google Scholar 

  16. Gras R., Mueller M., Gasteiger E., et al. (1999) Improving protein identification from peptide mass fingerprinting through a parameterized multi-level scoring algorithm and an optimized peak detection. Electrophoresis 20, 3535–3550.

    Article  PubMed  CAS  Google Scholar 

  17. Satten G., Datta S., Moura H., et al. (2004) Standardization and denoising algorithms for mass spectra to classify whole-organism bacterial specimens. Bioinformatics 20(17), 3128–3136.

    Article  PubMed  CAS  Google Scholar 

  18. Coombes K., Tsavachidis S., Morris J., Baggerly K., Hung M., and Kuerer H.(2004) Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Tech. rep., The University of Texas M.D. Anderson Cancer Center.

    Google Scholar 

  19. Dudoit S., Yang Y. H., Speed T. P., and Callow M. J. (2002) Statistical methods for identifying differentially expressed genes in replicated cdna microarray experiments. Statistica Sinica 12, 111–139.

    Google Scholar 

  20. Lai Y., Wu B., Chen L., and Zhao H. (2004) Statistical method for identifying differential gene-gene coexpression patterns. Bioinformatics 20, 3146–3155.

    Article  PubMed  CAS  Google Scholar 

  21. Isabelle G., Jason W., Stephen B., and Vladimir V. (2002) Gene selection for cancer classification using support vector machines. Mach. Learning 46(1-3), 389–422.

    Google Scholar 

  22. Qu Y., Adam B.-L., Yasui Y., Ward M. D., Cazares L. H., Schellhammer P. F., et al. (2002) Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin. Chem. 48(10), 1835–1843.

    PubMed  CAS  Google Scholar 

  23. Breiman L. (2001) Random forests. Mac. Learning 45, 5–32.

    Article  Google Scholar 

  24. Ho T. (1998) The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Yu, W. et al. (2006). MALDI-MS Data Analysis for Disease Biomarker Discovery. In: New and Emerging Proteomic Techniques. Methods in Molecular Biology™, vol 328. Humana Press. https://doi.org/10.1385/1-59745-026-X:199

Download citation

  • DOI: https://doi.org/10.1385/1-59745-026-X:199

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-519-4

  • Online ISBN: 978-1-59745-026-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics