Skip to main content

Magnetic Resonance Imaging of Embryonic and Fetal Development in Model Systems

  • Protocol
Magnetic Resonance Imaging

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 124))

  • 1812 Accesses

Abstracts

We give an overview of the applications and methods of high-resolution anatomical magnetic resonance imaging (MRI) in the study of embryonic and fetal development in animal models. Challenges associated with performing in utero studies are described. Recent in utero images in mouse and in nonhuman primates are presented. Results using magnetic resonance microscopy in fixed mouse embryos and in amphibian embryos in vivo are reviewed. We discuss how studies of pregnancy in animal models aid in the translation of innovative new MRI techniques to clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith B. R., Johnson G. A., Groman E. V., and Linney E. (1994) Magneticresonance microscopy of mouse embryos. Proc. Natl. Acad. Sci. USA 91, 3530ā€“3533.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Smith B. R. (1999) Magnetic resonance microscopy for developmental biology. Dev. Biol. 210, 222ā€“222.

    Google ScholarĀ 

  3. Jacobs R. E., Ahrens E. T., Meade T. J., and Fraser S. E. (1999) Looking deeper into vertebrate development. Trends Cell Biol. 9, 73ā€“76.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Jacobs R. E., Ahrens E. T., Dickinson M. E., and Laidlaw D. (1999) Towards a microMRI atlas of mouse development. Comput. Med. Imaging Graph. 23, 15ā€“24.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Ahrens E. T., Blumenthal J., Jacobs R. E., and Giedd J. N. (2000) Imaging brain development, in: Brain Mapping: The Systems (Toga A. W. and Mazziotta J. C., eds.), Academic, San Diego, CA, pp. 561ā€“589.

    ChapterĀ  Google ScholarĀ 

  6. Dhenain M., Ruffins S. W., and Jacobs R. E. (2001) Three-dimensional digital mouse atlas using high-resolution MRI. Dev. Biol. 232, 458ā€“470.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Benveniste H., Fowler J. S., Rooney W. D., et al. (2003) Maternal-fetal in vivo imaging: a combined PET and MRI study. J. Nucl. Med. 44, 1522ā€“1530.

    PubMedĀ  Google ScholarĀ 

  8. Schatten G., Hewitson L., Simerly C., Sutovsky P., and Huszar G. (1998) Cell and molecular biological challenges of ICSI: ART before science? Law Med. Ethics 26, 29ā€“37.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Chan A. W. S., Chong K. Y., Martinovich C., Simerly C., and Schatten G. (2001) Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 291, 309ā€“312.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Wilmut I., Schnieke A. E., McWhir J., Kind A. J., and Campbell K. H. S. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810ā€“813.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Campbell K. H. S., McWhir J., Ritchie W. A., and Wilmut I. (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64ā€“66.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Stark D. D. and Bradley Jr. W. G., eds. (1992) Magnetic Resonance Imaging. 2nd ed., vols. 1 and 2, Mosby-Year Book, St. Louis, MO.

    Google ScholarĀ 

  13. Liang Z. P. and Lauterbur P. C. (2000) Principles of Magnetic Resonance Imaging: A Signal Processing Perspective. IEEE, Piscataway, NJ.

    Google ScholarĀ 

  14. Cassidy P. J., Schneider J. E., Grieve S. M., Lygate C., Neubauer S., and Clarke K. (2004) Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields. J. Magn. Reson. Imaging 19, 229ā€“237.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  15. Wiesmann F., Szimtenings M., Frydrychowicz A., et al. (2003) High-resolution MRI with cardiac and respiratory gating allows for accurate in vivo atherosclerotic plaque visualization in the murine aortic arch. Magn. Reson. Med. 50, 69ā€“74.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  16. Hofman M. B. M., Paschal C. B., Li D. B., Haacke E. M., Vanrossum A. C., and Sprenger M. (1995) MRI of coronary arteries-2D breath-hold vs 3D respiratory-gated acquisition. J. Comput. Assist. Tomogr. 19, 56ā€“62.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Lenz G. W., Haacke E. M., and White R. D. (1989) Retrospective cardiac gating-a review of technical aspects and future-directions. Magn. Reson. Imaging 7, 445ā€“455.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Korin H. W., Felmlee J. P., Riederer S. J., and Ehman R. L. (1995) Spatialfrequency-tuned markers and adaptive correction for rotational motion. Magn. Reson. Med. 33, 663ā€“669.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Wood M. L., Shivji M. J., and Stanchev P. L. (1995) Planar-motion correction with use of k-space data acquired in Fourier MR-imaging. J. Magn. Reson. Imaging 5, 57ā€“64.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Hedley M. and Yan H. (1992) Motion artifact suppression-a review of postprocessing techniques. Magn. Reson. Imaging 10, 627ā€“635.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Ehman R. L. and Felmlee J. P. (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173, 255ā€“263.

    PubMedĀ  CASĀ  Google ScholarĀ 

  22. Callaghan P. T. (1991) Principles of Nuclear Magnetic Resonance Microscopy, Oxford University Press, New York, NY.

    Google ScholarĀ 

  23. Ahrens E. T. and Dubowitz D. J. (2001) Peripheral somatosensory fMRI in mouse at 11.7 T. NMR Biomed. 14, 318ā€“324.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Dwyer R., Fee J. P., and Moore J. (1995) Uptake of halothane and isoflurane by mother and baby during caesarean section. Br. J. Anaesth. 74, 379ā€“383.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Muir W., Hubbell J., and Skarda, R. (1989) Handbook of Veterinary Anesthesia. Mosby, St. Louis, MO, pp. 95ā€“107.

    Google ScholarĀ 

  26. Ramanathan S., Gandhi S., Arismendy J., Chalon J., and Turndorf H. (1982) Oxygen transfer from mother to fetus during cesarean section under epidural anesthesia. Anesth. Analg. 61, 576ā€“581.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Heynick L. and Merritt J. (2003) Radiofrequency fields and teratogenesis. Bioelectromagnetics Suppl 6, S174ā€“S186.

    Google ScholarĀ 

  28. Espinar A., Piera V., Carmona A., and Guerrero J. (1997) Histological changes during development of the cerebellum in the chick embryo exposed to a static magnetic field. Bioelectromagnetics 18, 36ā€“46.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Denegre J., Valles J., Lin K., Jordan W., and Mowry K. (1998) Cleavage planes in frog eggs are altered by strong magnetic fields. Proc. Natl. Acad. Sci. USA 95, 14,729ā€“14,732.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Narra V. R., Howell R. W., Goddu S. M., Rao D. V. (1996) Effects of a 1.5-Tesla static magnetic field on spermatogenesis and embryogenesis in mice. Invest. Radiol. 31, 586ā€“590.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Canedo L., Cantu R., and Hernandez J. (2003) Magnetic field exposure during gestation: pineal and cerebral cortex serotonin in the rat. Int. J. Dev. Neurosci. 52, 263.

    ArticleĀ  Google ScholarĀ 

  32. Allahyar K. and Robitaille P. (2000) Biological effects and health implications in magnetic resonance imaging. Concepts Magnetic Res. 15, 321ā€“359.

    Google ScholarĀ 

  33. Iwasaka M., Ueno S, and Tsuda H. (1994) Effects of magnetic fields on fibrinolysis. J. Appl. Phys. 75, 7162ā€“7164.

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Lary J. M., Conover D. L., Johnson P. H., and Hornung R. W. (1986) Doseresponse relationship between body-temperature and birth defects in radio frequency-irradiated rats. Bioelectromagnetics 7, 141ā€“149.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Levine D., Zuo C., Faro C., and Chen Q. (2001) Potential heating effect in the gravid uterus during MR HASTE imaging. J. Magn. Reson. Imaging 13, 856ā€“861.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Johnson G. A., Benveniste H., Black R. D., Hedlund L. W., Maronpot R. R., and Smith B. R. (1993) Histology by magnetic resonance microscopy. Magn. Reson. Q. 9, 1ā€“30.

    PubMedĀ  CASĀ  Google ScholarĀ 

  37. Johnson G. A., Cofer G. P., Gewalt S. L., and Hedlund L. W. (2002) Morphologic phenotyping with MR microscopy: the visible mouse. Radiology 222, 789ā€“793.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  38. Smith B. R., Linney E., Huff D. S., and Johnson G. A. (1996) Magnetic resonance microscopy of embryos. Comput. Med. Imaging Graph. 20, 483ā€“490.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Schneider J. E., Bamforth S. D., Grieve S. M., Clarke K., Bhattacharya S., and Neubauer S. (2003) High-resolution, high-throughput magnetic resonance imaging of mouse embryonic anatomy using a fast gradient-echo sequence. MAGMA 16, 43ā€“51.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  40. Chapon C., Franconi F., Roux J., Marescaux L., Le Jeune J. J., and Lemaire L. (2002) In utero time-course assessment of mouse embryo development using high resolution magnetic resonance imaging. Anat. Embryol. 206, 131ā€“137.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Kornguth S., Bersu E., Anderson M., and Markley J. (1992) Correlation of increased levels of class-I MHC H-2K(k) in the placenta of murine trisomy-16 conceptuses with structural abnormalities revealed by magnetic resonance microscopy. Teratology 45, 383ā€“391.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Basser P. J. and Pierpaoli C. (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111, 209ā€“219.

    Google ScholarĀ 

  43. Ahrens E. T., Narasimhan P. T., Nakada T., and Jacobs R. E. (2002) Small animal neuroimaging using magnetic resonance microscopy. Prog. Nucl. Mag. Res. 40, 275ā€“306.

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Zhang J. Y., Richards L. J., Yarowsky P., Huang H., van Zijl P. C. M., and Mori S. (2003) Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. Neuroimage 20, 1639ā€“1648

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  45. Glastonbury C. M. and Kennedy A. M. (2002) Ultrafast MRI of the fetus Australas. Radiol. 46, 22ā€“32.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  46. Levine D. (2001) Ultrasound versus magnetic resonance imaging in fetal evaluation. Top. Magn. Reson. Imaging 12, 25ā€“38.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Aguayo J. B., Blackband S. J., Schoeniger J., Mattingly M. A., and Hintermann M. (1986) NMR imaging of a single cell. Nature 322, 190ā€“191.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Jacobs R. E. and Fraser S. E. (1994) Magnetic resonance microscopy of embryonic cell lineages and movement. Science 263, 681ā€“684.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Louie A. Y., Huber M. M., Ahrens E. T., et al. (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 18, 321ā€“325.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Ahrens E. T., Rothbacher U., Jacobs R. E., and Fraser S. E. (1998) A model for MRI contrast enhancement using T1 agents. Proc. Natl. Acad. Sci. USA 95, 8443ā€“8448.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Huber M. M., Staubli A. B., Kustedjo K., et al. (1998) Fluorescently detectable magnetic resonance imaging agents. Bioconjugate Chem. 9, 242ā€“249.

    ArticleĀ  CASĀ  Google ScholarĀ 

  52. Pauser S., Keller K., Zschunke A., and Mugge C. (1993) Study of the membrane premeability of a paramagnetic metal complex on single cells by NMR microscopy. Magn. Reson. Imaging 11, 419ā€“424.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Sehy J. V., Ackerman J. J. H., and Neil J. J. (2002) Apparent diffusion of water, ions, and small molecules in the Xenopus oocyte is consistent with Brownian displacement. Magn. Reson. Med. 48, 42ā€“51.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  54. Sehy J. V., Ackerman J. J. H., and Neil J. J. (2001) Water and lipid MRI of the Xenopus oocyte. Magn. Reson. Med. 46, 900ā€“906.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  55. Pascolo L., Cupelli F., Anelli P. L., et al. (1999) Molecular mechanisms for the hepatic uptake of magnetic resonance imaging contrast agents. Biochem. Biophys. Res. Commun. 257, 746ā€“752.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Wald L. L., Carvajal L., Moyher S. E., et al. (1995) Phased-array detectors and an automated intensity-correction algorithm for high-resolution MR-imaging of the human brain. Magn. Reson. Med. 34, 433ā€“439.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Fenyes D. A. and Narayana P. A. (1998) In vivo echo-planar imaging of rat spinal cord. Magn. Reson. Imaging 16, 1249ā€“1255.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Arnder L. L., Shattuck M. D., and Black R. D. (1996) Signal-to-noise ratio comparison between surface coils and implanted coils. Magn. Reson. Med. 35, 727ā€“733.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Ahrens E. T., Feili-Hariri M., Xu H., Genove G., and Morel P. A. (2003) Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn. Reson. Med. 49, 1006ā€“1013.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Weissleder R., Cheng H. C., Bogdanova A., and Bogdanov A. (1997) Magnetically labeled cells can be detected by MR imaging. J. Magn. Reson. Imaging 7, 258ā€“263.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Contag C. H. and Bachmann M. H. (2002) Advances in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng. 4, 235ā€“260.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Costa G. L., Sandora M. R., Nakajima A., et al. (2001) Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J. Immunol. 167, 2379ā€“2387.

    PubMedĀ  CASĀ  Google ScholarĀ 

  63. Gambhir S. S., Barrio J. R., Phelps M. E., et al. (1999) Imaging adenoviraldirected reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA 96, 2333ā€“2338.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Ahrens, E.T., Srinivas, M., Capuano, S., Simhan, H.N., Schatten, G.P. (2006). Magnetic Resonance Imaging of Embryonic and Fetal Development in Model Systems. In: Prasad, P.V. (eds) Magnetic Resonance Imaging. Methods in Molecular Medicineā„¢, vol 124. Humana Press. https://doi.org/10.1385/1-59745-010-3:87

Download citation

  • DOI: https://doi.org/10.1385/1-59745-010-3:87

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-397-8

  • Online ISBN: 978-1-59745-010-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics