Skip to main content

Biological Applications of Manganese-Enhanced Magnetic Resonance Imaging

  • Protocol

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 124))

Abstracts

The manganese ion (Mn2+) has long been used in biomedical research as an indicator of calcium (Ca2+) influx in conjunction with fluorescent microscopy because it is well established that Mn2+ enters cells through voltage-gated Ca2+ channels. Mn2+ is also paramagnetic, resulting in a shortening of the spin-lattice relaxation time constant, T1, which yields positive contrast enhancement in T1-weighted magnetic resonance imaging (MRI), specific to tissues in which the ion has accumulated. Manganese-enhanced MRI (MEMRI) uses a combination of these properties of Mn2+ to elucidate anatomical information and to identify regions of cellular activity. The focus of this chapter will detail some of the current MEMRI methodologies and biological applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Merrit J. E., Jacob R., and Hallam T. J. (1989) Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J. Biol. Chem. 264, 1522–1527.

    Google Scholar 

  2. Simpson P. B., Challiss R. A., and Nahorski S. R. (1995) Divalent cation entry in cultured rat cerebellar granule cells measured using Mn2+ quench of fura 2 fluorescence. Eur. J. Neurosci. 7, 831–840.

    Article  PubMed  CAS  Google Scholar 

  3. Tisch-Idelson D., Sharabani M., Kloog Y., and Aviram I. (1999) Stimulation of neutrophils by prenylcysteine analogs: Ca2+ release and influx. Biochim. Biophys. Acta. 1451, 187–195.

    Article  PubMed  CAS  Google Scholar 

  4. Wiemann M., Busselberg D., Schirrmacher K., and Bingmann D. (1998) A calcium release activated calcium influx in primary cultures of rat osteoblast-like cells. Calcif. Tissue Int. 63, 154–159.

    Article  PubMed  CAS  Google Scholar 

  5. Du C., MacGowan G. A., Farkas D. L., and Koretsky A. P. (2001) Calibration of the calcium dissociation constant of Rhod(2) in the perfused mouse heart using manganese quenching. Cell Calcium 29, 217–227.

    Article  PubMed  Google Scholar 

  6. Narita K., Kawasaki F., and Kita H. (1990) Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Res. 510, 289–295.

    Article  PubMed  CAS  Google Scholar 

  7. Aschner M. and Aschner J. (1991) Manganese neurotoxicity: cellular effects and blood brain barrier transport. Neurosci. Biobehav. Rev. 15, 333–340.

    Article  PubMed  CAS  Google Scholar 

  8. Brurok H., Schjitt J., Berg K., Karlsson J. O., and Jynge P. (1997) Manganese and the heart: acute cardiodepression and myocardial accumulation of manganese. Acta Physiol. Scand. 159, 33–40.

    Article  PubMed  CAS  Google Scholar 

  9. Chandra S. V., Shukla G. S., Srivastava R. S., Singh H., and Gupta V. P. (1981) An exploratory study of manganese exposure to welders. Clin. Toxicol. 18, 407–416.

    Article  PubMed  CAS  Google Scholar 

  10. Pal P. K., Samii A., and Calne D. B. (1999) Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology 20, 227–238.

    PubMed  CAS  Google Scholar 

  11. McMillan D. E. (1999) A brief history of the neurobehavioral toxicity of manganese: some unanswered questions. Neurotoxicology 20, 499–507.

    PubMed  CAS  Google Scholar 

  12. Bird E. D., Anton A. H., and Bullock B. (1984) The effect of manganese inhalation on basal ganglia dopamine concentrations in rhesus monkey. Neurotoxicology 5, 59–65.

    PubMed  CAS  Google Scholar 

  13. Morganti J. B., Lown B. A., Stineman C. H., D’Agostino R. B., and Massaro E. J. (1985) Uptake, distribution and behavioral effects of inhalation exposure to manganese (MnO2) in the adult mouse. Neurotoxicology 6, 1–15.

    PubMed  CAS  Google Scholar 

  14. Tjälve H., Mejare C., and Borg-Neczak K. (1995) Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharm. Toxicol. 77, 23–31.

    Article  Google Scholar 

  15. Tjälve H., Henriksson J., Tallkvist J., Larsson B., and Lindquist N. (1996) Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharm. Toxicol. 79, 347–356.

    Article  Google Scholar 

  16. Sloot W. N. and Gramsbergen J. P. (1994) Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res. 657, 124–132.

    Article  PubMed  CAS  Google Scholar 

  17. Merritt J. E., Jacob R., and Hallam T. J. (1989) Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J. Biol. Chem. 25, 1522–1527.

    Google Scholar 

  18. Cory D. A., Schwartzentruber D. J., and Mock B. H. (1987) Ingested manganese chloride as a contrast agent for magnetic resonance imaging. Magn. Reson. Imaging 5, 65–70.

    Article  PubMed  CAS  Google Scholar 

  19. Geraldes C. F., Sherry A. D., Brown R. D. 3rd, and Koenig S. H. (1986) Magnetic field dependence of solvent proton relaxation rates induced by Gd3+ and Mn2+ complexes of various polyaza macrocyclic ligands: implications for NMR imaging. Magn. Reson. Med. 3, 242–250.

    Article  PubMed  CAS  Google Scholar 

  20. Mendonca-Dias M. H., Gaggelli E., and Lauterbur P. C. (1983) Paramagnetic contrast agents in nuclear magnetic resonance medical imaging. Semin. Nucl. Med. 13, 364–376.

    Article  PubMed  CAS  Google Scholar 

  21. Fornasiero D., Bellen J. C., Baker R. J., and Chatterton B. E. (1987) Paramagnetic complexes of manganese(II), iron(III), and gadolinium(III) as contrast agents for magnetic resonance imaging. The influence of stability constants on the biodistribution of radioactive aminopolycarboxylate complexes. Invest. Radiol. 22, 322–327.

    Article  PubMed  CAS  Google Scholar 

  22. Pautler R. G., Silva A. C., and Koretsky A. P. (1998) In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn. Reson. Med. 40, 740–748.

    Article  PubMed  CAS  Google Scholar 

  23. Takeda A., Ishiwatari A., and Okada S. (1998) In vivo stimulation-induced release of manganese in rat amygdala. Brain Res. 811, 147–151.

    Article  PubMed  CAS  Google Scholar 

  24. Pautler R. G. and Koretsky A. P. (2001) Tracing odor induced activation in the olfactory bulbs of mice using manganese enhanced magnetic resonance imaging (MEMRI). Neuroimage 16, 441–448.

    Article  Google Scholar 

  25. Pautler R. G., Mongeau R., and Jacobs R. E. (2003) In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI). Magn. Reson. Med. 50, 33–39.

    Article  PubMed  Google Scholar 

  26. Watanabe T., Michaelis T., and Frahm J. (2001) Mapping of retinal projections in the living rat using high-resolution 3D gradient-echo MRI with Mn2+-induced contrast. Magnet. Reson. Med. 46, 424–429.

    Article  CAS  Google Scholar 

  27. Saleem K. S., Pauls J. M., Augath M., et al. (2002) Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 34, 685–700.

    Article  PubMed  CAS  Google Scholar 

  28. Van der Linden A., Verhoye M., Van Meir V., et al. (2002) In vivo manganeseenhanced magnetic resonance imaging reveals connections and functional properties of the songbird vocal control system. Neuroscience 112, 467–474.

    Article  PubMed  Google Scholar 

  29. Tindemans I., Verhoye M., Balthazart J., and Van Der Linden A. (2003) In vivo dynamic ME-MRI reveals differential functional responses of RA-and area X-projecting neurons in the HVC of canaries exposed to conspecific song. Eur. J. Neurosci. 18, 3352–3360.

    Article  PubMed  CAS  Google Scholar 

  30. Hu T. C. C., Pautler R. G., MacGowan G. A., and Koretsky A. P. (2001) Manganese MRI enhancement of the mouse heart during changes in ionotropy. Magn. Reson. Med. 46, 884–890.

    Article  PubMed  CAS  Google Scholar 

  31. 31.-Pautler R. G., Olson C., Williams D. S., Ho C., and Koretsky A. P. (1990) Mn2+ enhanced MRI (MEMRI) in vivo tract tracing in mouse mutants and nonhuman primates. Proc. Intl. Soc. Mag. Reson. Med. 7, 448.

    Google Scholar 

  32. Ryu S., Brown S. L., Kolozsvary A., Ewing J. R., and Kim J. H. (2002) Noninvasive detection of radiation-induced optic neuropathy by manganese-enhanced MRI. Radiat. Res. 157, 500–505.

    Article  PubMed  CAS  Google Scholar 

  33. Watanabe T., Michaelis T., and Frahm J. (2001), Mapping of retinal projections in the living rat using high-resolution 3D gradient-echo MRI with Mn2+-induced contrast. Magn. Reson. Med. 46, 424–429.

    Article  PubMed  CAS  Google Scholar 

  34. Lublin F. D., Maurer P. H., Berry R. G., and Tippett D. (1981) Delayed, relapsing experimental allergic encephalomyelitis in mice. J. Immunol. 126, 819–822.

    PubMed  CAS  Google Scholar 

  35. 35.-Krombach G. A., Saeed M., Higgins C. B., Novikov V., and Wendland M. F. (2004) Contrast-enhanced MR delineation of stunned myocardium with administration of MnCl(2) in rats. Radiology 230, 183–190.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Pautler, R.G. (2006). Biological Applications of Manganese-Enhanced Magnetic Resonance Imaging. In: Prasad, P.V. (eds) Magnetic Resonance Imaging. Methods in Molecular Medicine™, vol 124. Humana Press. https://doi.org/10.1385/1-59745-010-3:365

Download citation

  • DOI: https://doi.org/10.1385/1-59745-010-3:365

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-397-8

  • Online ISBN: 978-1-59745-010-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics