Skip to main content

Tissue pH Measurement by Magnetic Resonance Spectroscopy and Imaging

  • Protocol
Magnetic Resonance Imaging

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 124))

Abstracts

Noninvasive techniques for measurement of tissue pH can be invaluable in assessing disease extent and response to therapy in a variety of pathological conditions, such as renal acidosis and alkalosis, and cancers. We present the details of three techniques for noninvasive measurement of tissue pH: magnetic resonance spectroscopy (MRS), magnetic resonance spectroscopic imaging (MRSI), and contrast-enhanced magnetic resonance imaging (MRI). These techniques exploit the pH-sensitivity of three different molecules, 3-aminopropylphosphonate (3-APP), (±) 2-imidazole-1-yl-3-ethoxycarbonyl propionic acid (IEPA), and 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetrakis(acetamidomethylenephosphonic acid) (Gd-DOTA-4AmP), to examine local extracellular pH in vivo. The level of detail presented will enable nonnovice users of MRS and MRI to reproduce these methodologies in their own laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrogue H. E. and Adrogue H. J. (2001) Acid-base physiology. Respir. Care 46, 328–341.

    PubMed  CAS  Google Scholar 

  2. Adrogue H. J. and Wesson D. E. (1994) Acid-Base. Blackwell Scientific, Boston, MA.

    Google Scholar 

  3. Stubbs M., Bhujwalla Z. M., Tozer G. M., et al. (1992) An assessment of 31P MRS as a method of measuring pH in rat tumours. NMR Biomed. 5, 351–359.

    Article  PubMed  CAS  Google Scholar 

  4. Raghunand N., Altbach M. I., Van Sluis R., et al. (1999) Plasmalemmal pH-gradients in drug-sensitive and drug-resistant MCF-7 human breast carcinoma xenografts measured by 31P magnetic resonance spectroscopy. Biochem. Pharmacol. 57, 309–312.

    Article  PubMed  CAS  Google Scholar 

  5. Raghunand N., Mahoney B., Van Sluis R., Baggett B., and Gillies R.J. (2001) Acute metabolic alkalosis enhances response of C3H mouse mammary tumors to the weak base mitoxantrone. Neoplasia 3, 227–235.

    Article  PubMed  CAS  Google Scholar 

  6. Paillard M. (1997) Na+/H+ exchanger subtypes in the renal tubule: function and regulation in physiology and disease. Exp. Nephrol. 5, 277–284.

    PubMed  CAS  Google Scholar 

  7. Lai L. W., Erickson R. P., Venta P. J., Tashian R. E., and Lien Y. H. (1998) Promoter activity of carbonic anhydrase II regulatory regions in cultured renal proximal tubular cells. Life Sciences 63, 121–126.

    Article  PubMed  CAS  Google Scholar 

  8. Shayakul C., Breton S., Brown D., and Alper S. L. (1999) Gene therapy of inherited renal tubular disease. Amer. J. Kidney Diseases 34, 374–379.

    Google Scholar 

  9. Lien Y.H. and Lai L.W. (1997) Gene therapy for renal diseases. Kidney Intl. Suppl. 61, S85–S88.

    CAS  Google Scholar 

  10. Ojugo A. S., McSheehy P. M., McIntyre D. J., et al. (1999) Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous 19F and 31P probes. NMR Biomed. 12, 495–504.

    Article  PubMed  CAS  Google Scholar 

  11. Mason R. P. (1999) Transmembrane pH gradients in vivo: measurements using fluorinated vitamin B6 derivatives. Curr. Med. Chem. 6, 481–499.

    PubMed  CAS  Google Scholar 

  12. Van Sluis R., Bhujwalla Z. M., Raghunand N., et al. (1999) Imaging of extracellular pH using 1H MRSI. Magn. Reson. Med. 41, 743–750.

    Article  PubMed  Google Scholar 

  13. Garcia-Martin M. L., Herigault G., Remy C., et al. (2001) Mapping extracellular pH in rat brain gliomas in vivo by 1H magnetic resonance spectroscopic imaging: comparison with maps of metabolites. Cancer Res. 61, 6524–6531.

    PubMed  CAS  Google Scholar 

  14. Vermathen P., Capizzano A. A., and Maudsley A. A. (2000) Administration and 1H MRS detection of histidine in human brain: application to in vivo pH measurement. Magn. Reson. Med. 43, 665–675.

    Article  PubMed  CAS  Google Scholar 

  15. Mori S., Eleff S. M., Pilatus U., Mori N., and Van Zijl P. C. M. (1998) Sensitive detection of solvent-saturable resonances by proton NMR spectroscopy: a new approach to study pH effects. Magn. Reson. Med. 40, 36–42.

    Article  PubMed  CAS  Google Scholar 

  16. Ward K.M. and Balaban R.S. (2000) Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn. Reson. Med. 44, 799–802.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang S., Wu K., and Sherry A. D. (1999) A novel pH-sensitive MRI contrast agent. Angew. Chemie Intl. Ed. 38, 3192–3194.

    Article  CAS  Google Scholar 

  18. Aime S., Botta M., Crich S. G., Giovenzana G., Palmisano G., and Sisti M. (1999) A macromolecular Gd(III) complex as pH-responsive relaxometric probe for MRI applications. Chem. Commun. 16, 1577–1578.

    Article  Google Scholar 

  19. Mikawa M., Miwa N., Brautigam M., Akaike T., and Maruyama A. (2000) Gd(3+)-loaded polyion complex for pH depiction with magnetic resonance imaging. J. Biomed. Mat. Res. 49, 390–395.

    Article  CAS  Google Scholar 

  20. Raghunand N., Howison C., Sherry A. D., Zhang S., and Gillies R.J. Renal and systemic pH imaging by contrast-enhanced MRI. Magn. Reson. Med. 49, 249–257.

    Google Scholar 

  21. Graham R. A., Taylor A. H., and Brown T. R. (1994) A method for calculating the distribution of pH in tissues and a new source of pH error from the 31P-NMR spectrum. Am. J. Physiol. 266, R638–R645.

    PubMed  CAS  Google Scholar 

  22. Shungu D. C. and Glickson J. D. (1994) Band-selective spin-echoes for in vivo localized 1H NMR spectroscopy. Magn. Reson. Med. 32, 277–284.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Raghunand, N. (2006). Tissue pH Measurement by Magnetic Resonance Spectroscopy and Imaging. In: Prasad, P.V. (eds) Magnetic Resonance Imaging. Methods in Molecular Medicine™, vol 124. Humana Press. https://doi.org/10.1385/1-59745-010-3:347

Download citation

  • DOI: https://doi.org/10.1385/1-59745-010-3:347

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-397-8

  • Online ISBN: 978-1-59745-010-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics