Skip to main content

Introduction to Magnetic Resonance Imaging and Spectroscopy

  • Protocol

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 124))

Abstracts

This chapter provides a brief introduction to the principles and practice of magnetic resonance imaging and spectroscopy. Its goal is to equip researchers in the life sciences with a basic understanding of the capabilities and limitations of magnetic resonance techniques, and a command of the terminology used in more technical publications, including the methods sections of this book. Magnetic resonance is extremely versatile, and this introductory chapter attempts to provide an indication of its current range of applications, as well as emerging possibilities. Many of the applications mentioned here are described in greater detail in the later chapters. It is hoped that this introduction may provide some guidance to the reader in navigating the rest of the book, and in identifying ways to exploit magnetic resonance imaging and spectroscopy in his or her own research.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Edelman R. R., Hesselink J. R., and Zlatkin M. B., eds. (2005) Clinical Magnetic Resonance Imaging. Elsevier (Saunders), New York, NY.

    Google Scholar 

  2. Stark D. D. and Bradley W. G., eds. (1999) Magnetic Resonance Imaging. Mosby, New York, NY.

    Google Scholar 

  3. Haacke E.M., Brown R.W., Thompson M.R., and Venkatesen R. (1999) Magnetic Resonance Imaging: Physical Principles and Sequence Design. John Wiley and Sons, New York, NY.

    Google Scholar 

  4. Kuperman V. (2000) Magnetic Resonance Imaging: Physical Principles and Applications. Academic Press, San Diego, CA.

    Google Scholar 

  5. Vlaardingerbroek M. T. and Den Boer J. A. (2003) Magnetic Resonance Imaging, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  6. Salibi N. and Brown M. A. (1998) Clinical MR Spectroscopy: First Principles. Wiley-Liss, New York, NY.

    Google Scholar 

  7. Gadian D. G. (1995) NMR and its Applications to Living Systems. Oxford University Press, Oxford, UK.

    Google Scholar 

  8. Moller H. E., Chen X. J., Saam B., et al. (2002) MRI of the lungs using hyperpolarized noble gases. Magn. Reson. Med. 47, 1029–1051.

    Article  PubMed  Google Scholar 

  9. Goyen M. and Debatin J. F. (2004) Gadopentetate dimeglumine-enhanced threedimensional MR-angiography: dosing, safety, and efficacy. J. Magn. Reson. Imaging 19, 261–273

    Article  PubMed  Google Scholar 

  10. De Ridder F., De Maeseneer M., Stadnik T., Luypaert R., and Osteaux M. (2001) Severe adverse reactions with contrast agents for magnetic resonance: clinical experience in 30,000 MR examinations. JBR-BTR 84, 150–152.

    PubMed  Google Scholar 

  11. Okada S., Katagiri K., Kumazaki T., and Yokoyama H. (2001) Safety of gadolinium contrast agent in hemodialysis patients. Acta Radiol. 42, 339–341.

    Article  PubMed  CAS  Google Scholar 

  12. Wolf G.L. and Baum L. (1983) Cardiovascular toxicity and tissue proton T1 response to manganese injection in the dog and rabbit. Am. J. Roentgenol. 141, 193–197.

    CAS  Google Scholar 

  13. Buxton R. (2002) Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  14. Huettel S.A., Song A. W., and McCarthy G. (2004) Functional Magnetic Resonance Imaging. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  15. Golay X., Hendrikse J., and Lim T. C. (2004) Perfusion imaging using arterial spin labeling. Top Magn. Reson. Imaging 15, 10–27.

    Article  PubMed  Google Scholar 

  16. Van Zijl P. C. and Le Bihan D., eds. (2002) Special issue: diffusion tensor imaging and axonal mapping-state of the art. NMR Biomed. 15, Issue 7-8.

    Google Scholar 

  17. Henkelman R. M., Stanisz G. J., and Graham S. J. (2001) Magnetization transfer in MRI: a review. NMR Biomed. 14, 57–64.

    Article  PubMed  CAS  Google Scholar 

  18. Filippi M. and Rocca M. A. (2004) Magnetization transfer magnetic resonance imaging in the assessment of neurological diseases. J. Neuroimaging 14, 303–313.

    PubMed  Google Scholar 

  19. Jensen J. H. and Helpern J. A., eds. (2004) Special issue: iron-fortified MRI: effects and applications of iron-induced NMR relaxation in biological tissues. NMR Biomed. 17, Issue 7.

    Google Scholar 

  20. Cha S. (2004) Perfusion MR imaging of brain tumors. Top. Magn. Reson. Imaging 15, 279–289.

    Article  PubMed  Google Scholar 

  21. Kuhl C. K. and Schild H. H. (2000) Dynamic image interpretation of MRI of the breast. J. Magn. Reson. Imaging 12, 965–974.

    Article  PubMed  CAS  Google Scholar 

  22. Edelman R. R. (2004) Contrast-enhanced MR imaging of the heart: overview of the literature. Radiology 232, 653–668.

    Article  PubMed  Google Scholar 

  23. Kim R. J., Shah D. J., and Judd R. M. (2003) How we perform delayed enhancement imaging. J. Cardiovasc. Magn. Reson. 5, 505–514.

    Article  PubMed  Google Scholar 

  24. Silva A. C. and Koretsky A. P., eds. (2004) Special issue: manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed. 17, Issue 8.

    Google Scholar 

  25. Semelka R. C. and Helmberger T. K. (2001) Contrast agents for MR imaging of the liver. Radiology 218, 27–38.

    PubMed  CAS  Google Scholar 

  26. Anzai Y. (2004) Superparamagnetic iron oxide nanoparticles: nodal metastases and beyond. Top. Magn. Reson. Imaging 15, 103–111.

    Article  PubMed  Google Scholar 

  27. Quick H. H., Debatin J. F., and Ladd M. E. (2002) MR imaging of the vessel wall. Eur. Radiol. 12, 889–900.

    Article  PubMed  Google Scholar 

  28. Artemov D. (2003) Molecular magnetic resonance imaging with targeted contrast agents. J. Cell. Biochem. 90, 518–524.

    Article  PubMed  CAS  Google Scholar 

  29. Meade T. J., Taylor A. K., and Bull S. R. (2003) New magnetic resonance contrast agents as biochemical reporters. Curr. Opin. Neurobiol. 13, 597–602.

    Article  PubMed  CAS  Google Scholar 

  30. Dzik-Jurasz A. S. K., ed. (2003) Special issue: molecular imaging. Br. J. Radiol. 76, Spec. No. 2.

    Google Scholar 

  31. Di Costanzo A., Trojsi F., Tosetti M., et al. (2003) High-field proton MRS of human brain. Eur. J. Radiol. 48, 146–153.

    Article  PubMed  Google Scholar 

  32. Golder W. (2004) Magnetic resonance spectroscopy in clinical oncology. Onkologie 27, 304–309.

    Article  PubMed  CAS  Google Scholar 

  33. Dobbins R. L. and Malloy C. R. (2003) Measuring in vivo metabolism using nuclear magnetic resonance. Curr. Opin. Clin. Nutr. Metab. Care 6, 501–509.

    Article  PubMed  Google Scholar 

  34. Ross B. and Bluml S. (2001) Magnetic resonance spectroscopy of the human brain. Anat. Rec. 265, 54–84.

    Article  PubMed  CAS  Google Scholar 

  35. Cecil K.M. and Jones B.V. (2001) Magnetic resonance spectroscopy of the pediatric brain. Top. Magn. Reson. Imaging 12, 435–452.

    Article  PubMed  CAS  Google Scholar 

  36. Burtscher I. M. and Holtas S. (2001) Proton MR spectroscopy in clinical routine. J. Magn. Reson. Imaging 13, 560–567.

    Article  PubMed  CAS  Google Scholar 

  37. McKnight T. R. (2004) Proton magnetic resonance spectroscopic evaluation of brain tumor metabolism. Semin. Oncol. 31, 605–617.

    Article  PubMed  CAS  Google Scholar 

  38. Howe F. A. and Opstad K. S. (2003) 1H MR spectroscopy of brain tumours and masses. NMR Biomed. 16, 123–131.

    Article  PubMed  CAS  Google Scholar 

  39. Mattei J. P., Bendahan D., and Cozzone P. (2004) P-31 magnetic resonance spectroscopy. A tool for diagnostic purposes and pathophysiological insights in muscle diseases. Reumatismo 56, 9–14.

    PubMed  CAS  Google Scholar 

  40. Bendahan D., Giannesini B., and Cozzone P. J. (2004) Functional investigations of exercising muscle: a noninvasive magnetic resonance spectroscopy-magnetic resonance imaging approach. Cell. Mol. Life Sci. 61, 1001–1015.

    Article  PubMed  CAS  Google Scholar 

  41. Stanley J. A. (2002) In vivo magnetic resonance spectroscopy and its application to neuropsychiatric disorders. Can. J. Psychiatry 47, 315–326.

    PubMed  Google Scholar 

  42. Schaefer S. (2000) Magnetic resonance spectroscopy in human cardiomyopathies. J. Cardiovasc. Magn. Reson. 2, 151–157.

    Article  PubMed  CAS  Google Scholar 

  43. Arias-Mendoza F. and Brown T. R. (2003-2004) In vivo measurement of phosphorous markers of disease. Dis. Markers 19, 49–68.

    PubMed  CAS  Google Scholar 

  44. Taylor-Robinson S. D. (2001) Applications of magnetic resonance spectroscopy to chronic liver disease. Clin. Med. 1, 54–60.

    PubMed  CAS  Google Scholar 

  45. Roden M. (2001) Non-invasive studies of glycogen metabolism in human skeletal muscle using nuclear magnetic resonance spectroscopy. Curr. Opin. Clin. Nutr. Metab. Care 4, 261–266.

    Article  PubMed  CAS  Google Scholar 

  46. Baverel G., Conjard A., Chauvin M. F., et al. (2003) Carbon 13 NMR spectroscopy: a powerful tool for studying renal metabolism. Biochimie. 85, 863–871.

    Article  PubMed  CAS  Google Scholar 

  47. Landau B. R. (2001) Methods for measuring glycogen cycling. Am. J. Physiol. Endocrinol. Metab. 281, E413–419.

    PubMed  CAS  Google Scholar 

  48. Cerdán S., ed. (2003) Special issue: 13C NMR studies of cerebral metabolism. NMR Biomed. 16, Issue 6-7.

    Google Scholar 

  49. Garcia-Espinosa M. A., Rodrigues T. B., Sierra A., et al. (2004) Cerebral glucose metabolism and the glutamine cycle as detected by in vivo and in vitro 13C NMR spectroscopy. Neurochem. Int. 45, 297–303.

    Article  PubMed  CAS  Google Scholar 

  50. Portais J. C. and Delort A. M. (2002) Carbohydrate cycling in micro-organisms: what can (13)C-NMR tell us? FEMS Microbiol. Rev. 26, 375–402.

    PubMed  CAS  Google Scholar 

  51. Martino R., Malet-Martino M., and Gilard V. (2000) Fluorine nuclear magnetic resonance, a privileged tool for metabolic studies of fluoropyrimidine drugs. Curr. Drug Metab. 1, 271–303.

    Article  PubMed  CAS  Google Scholar 

  52. Wolf W., Presant C. A., and Waluch V. (2000) 19F-MRS studies of fluorinated drugs in humans. Adv. Drug Deliv. Rev. 41, 55–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Storey, P. (2006). Introduction to Magnetic Resonance Imaging and Spectroscopy. In: Prasad, P.V. (eds) Magnetic Resonance Imaging. Methods in Molecular Medicine™, vol 124. Humana Press. https://doi.org/10.1385/1-59745-010-3:3

Download citation

  • DOI: https://doi.org/10.1385/1-59745-010-3:3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-397-8

  • Online ISBN: 978-1-59745-010-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics