Skip to main content

Cardiac Magnetic Resonance Spectroscopy

A Window for Studying Physiology

  • Protocol
Magnetic Resonance Imaging

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 124))

  • 1735 Accesses

Abstracts

Cardiac magnetic resonance spectroscopy (MRS) opens a window to the metabolism of the heart. Various intermediates of metabolic pathways can be observed and followed over time. Most applications of cardiac MRS have been performed with the 31P nuclei, which reflect the metabolites from the high-energy phosphate metabolism. Other nuclei, such as 1H or 13C, have also been investigated but less intensively, most likely because of either large background signals (e.g., water) or inherent low sensitivity of the method. MRS can be used for the examination of tissue extracts, isolated organs, whole animals in vivo, as well as healthy human subjects and patients. Although the primary motivation is to gain an understanding of metabolism using animal models, a potential for diagnostic applications in humans certainly exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellenger N. G., Burgess M. I., Ray S. G., et al. (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur. Heart J. 21, 1387ā€“1396.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Gadian D. (1982) Nuclear Magnetic Resonance and its Application to Living Systems. Oxford University Press, New York, NY.

    Google ScholarĀ 

  3. Bottomley P. A., Lugo Olivieri C. H., and Giaquinto R. (1997) What is the optimum phased array coil design for cardiac and torso magnetic resonance? Magn. Reson. Med. 37, 591ā€“599.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Ackerman J. J. H., Gadian D. G., Radda G. K., and Wong G. G. (1981) Observation of 1H NMR signal with receiver coils tuned for other nuclei. J. Magn. Reson. 42, 498ā€“500.

    CASĀ  Google ScholarĀ 

  5. Ordidge R. J., Helpern J. A., Hugg J. W., and Matson G. B. (2000) Single voxel whole body phosphorus MRS, in Methods in Biomedical Magnetic Resonance Imaging and Spectroscopy, 1 ed., vol. 2 (Young I. R., ed.), John Wiley & Sons, Chicester, UK, pp. 729ā€“734.

    Google ScholarĀ 

  6. Brown T. (2000) Chemical shift imaging, in Methods in Biomedical Magnetic Resonance Imaging and Spectroscopy, 1 ed., vol. 2 (Young I. R., ed.), John Wiley & Sons, Chicester, UK, pp. 751ā€“762.

    Google ScholarĀ 

  7. Frahm J. and HƤnicke W. (2000) Single voxel localized proton nmr spectroscopy of human brain in vivo, in Methods in Biomedical Magnetic Resonance Imaging and Spectroscopy, 1 ed., vol. 2 (Young I. R., ed.), John Wiley & Sons, Chicester, UK, pp. 735ā€“750.

    Google ScholarĀ 

  8. Bottomley P. A. (1987) Spatial localization in NMR-spectroscopy in vivo. Ann. N. Y. Acad. Sci. 508, 333ā€“348.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Ordidge R. J., Bendall M. R., Gordon R. E., and Conelly A. (1985) Volume selection for in-vivo biological spectroscopy, in Magnetic Resonance in Biology and Medicine (Govil G., Khetrapal C. L., and Saran A., eds.), Tata McGraw-Hill, New Dehli, India, pp. 387ā€“397.

    Google ScholarĀ 

  10. Frahm J., Merboldt K. D., and HƤnicke W. (1987) Localized proton spectroscopy using stimulated echoes. J. Magn. Reson. 72, 501ā€“508.

    Google ScholarĀ 

  11. Ordidge R. J., Conelly A., and Lohman J. A. B. (1986) Image selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J. Magn. Reson. 66, 283ā€“294.

    CASĀ  Google ScholarĀ 

  12. Brown T. R., Kincaid B. M., and Ugurbil K. (1982) NMR chemical shift imaging in three dimensions. Proc. Natl. Acad. Sci. USA 79, 3523ā€“3526.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Maudsley A. A., Hilal S. K., Perman W. H., and Simon H. E. (1983) Spatially resolved high-resolution spectroscopy by ā€œfour-dimensionalā€ NMR. J. Magn. Reson. 51, 147ā€“152.

    CASĀ  Google ScholarĀ 

  14. Bottomley P. A., Atalar E., and Weiss R. G. (1996) Human cardiac high-energy phosphate metabolite concentrations by 1D-resolved NMR spectroscopy. Magn. Reson. Med. 35, 664ā€“670.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Pohmann R. and von Kienlin M. (2001) Accurate phosphorus metabolite images of the human heart by 3D acquisition-weighted CSI. Magn. Reson. Med. 45, 817ā€“826.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Moon R. and Richards J. (1973) Determination of intracellular pH by 31P magnetic resonance. J. Biol. Chem. 248, 7276ā€“7278.

    PubMedĀ  CASĀ  Google ScholarĀ 

  17. Williams G. D., Mosher T. J., and Smith M. B. (1993) Simultaneous determination of intracellular magnesium and pH from the three 31P NMR Chemical shifts of ATP. Anal. Biochem. 214, 458ā€“467.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Horn M., Neubauer S., Bomhard M., Kadgien M., Schnackerz K., and Ertl G. (1993) 31P-NMR spectroscopy of human blood and serum: first results from volunteers and patients with congestive heart failure, diabetes mellitus and hyperlipidemia. MAGMA 1, 55ā€“60.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Sieverding L., Jung W. I., Breuer J., et al. (1997) Proton-decoupled myocardial 31P NMR spectroscopy reveals decreased PCr/Pi in patients with severe hypertrophic cardiomyopathy. Am. J. Cardiol. 80, 34Aā€“40A.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Horn M., Kadgien M., Schnackerz K., and Neubauer S. (2000) 31P-NMR spectroscopy of blood: a species comparison. J. Cardiovasc. Magn. Reson. 2, 143ā€“149.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Chen W., Cho Y., Merkle H., et al. (1999) In vitro and in vivo studies of 1H NMR visibility to detect deoxyhemoglobin and deoxymyoglobin signals in myocardium. Magn. Reson. Med. 42, 1ā€“5.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  22. Stothers J. B. (1982) Carbon 13-NMR Spectroscopy, Academic, New York, NY.

    Google ScholarĀ 

  23. Shaka A. J., Keeler J., and Freeman R. (1983) An improved sequence for broadband decoupling: WALTZ-16. J. Magn. Reson. 53, 313ā€“340.

    CASĀ  Google ScholarĀ 

  24. Overhauser A. W. (1953) Polarization of nuclei in metals. Phys. Rev. 92, 411ā€“415.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Solomon I. (1955) Relaxation processes in a system of two spins. Phys. Rev. 99, 559ā€“565.

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Wei H., Merkle H., Xu Y., Ellermann J., Sipprell K., and Ugurbil K. (1997) Detection of 13C-labeled metabolites in the in vivo canine heart by B1 insensitive heteronuclear coherent polarization transfer and comparison of signal enhancement with NOE. Magn. Reson. Med. 37, 327ā€“330.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Bottomley P. A. (1994) MR spectroscopy of the human heart: the status and the challenges. Radiology 191, 593ā€“612.

    PubMedĀ  CASĀ  Google ScholarĀ 

  28. Neubauer S., Horn M., Naumann A., et al. (1995) Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J. Clin. Invest. 95, 1092ā€“1100.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Schwartz G. G., Greyson C., Wisneski J. A., and Garcia J. (1994) Inhibition of fatty acid metabolism alters myocardial high-energy phosphates in vivo. Am. J. Physiol. 267, H224ā€“H231.

    PubMedĀ  CASĀ  Google ScholarĀ 

  30. Hardy C. J., Weiss R. G., Bottomley P. A., and Gerstenblith G. (1991) Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am. Heart J. 122, 795ā€“801.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Zhang J., Wilke N., Wang Y., et al. (1996) Functional and bioenergetic consequences of postinfarction left ventricular remodeling in a new porcine model. MRI and 31 P-MRS study. Circulation 94, 1089ā€“1100.

    PubMedĀ  CASĀ  Google ScholarĀ 

  32. Horn M., Neubauer S., Frantz S., et al. (1996) Preservation of left ventricular mechanical function and energy metabolism in rats after myocardial infarction by the angiotensin-converting enzyme inhibitor quinapril. J. Cardiovasc. Pharmacol. 27, 201ā€“210.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Liao R., Nascimben L., Friedrich J., Gwathmey J. K., and Ingwall J. S. (1996) Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance. Circ. Res. 78, 893ā€“902.

    PubMedĀ  CASĀ  Google ScholarĀ 

  34. Neubauer S., Krahe T., Schindler R., et al. (1992) 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 86, 1810ā€“1888.

    PubMedĀ  CASĀ  Google ScholarĀ 

  35. Conway M. A., Allis J., Ouwerkerk R., Niioka T., Rajagopalan B., and Radda G. K. (1991) Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 338, 973ā€“976.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Weiss R. G., Bottomley P. A., Hardy C. J., and Gerstenblith G. (1990) Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N. Engl. J. Med. 323, 1593ā€“1600.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Yabe T., Mitsunami K., Okada M., Morikawa S., Inubushi T., and Kinoshita M. (1994) Detection of myocardial ischemia by 31P magnetic resonance spectroscopy during handgrip exercise. Circulation 89, 1709ā€“1716.

    PubMedĀ  CASĀ  Google ScholarĀ 

  38. Pluim B. M., Lamb H. J., Kayser H. W., et al. (1998) Functional and metabolic evaluation of the athleteā€™s heart by magnetic resonance imaging and dobutamine stress magnetic resonance spectroscopy. Circulation 97, 666ā€“672.

    PubMedĀ  CASĀ  Google ScholarĀ 

  39. Neubauer S., Horn M., Cramer M., et al. (1997) Myocardial phosphocreatineto-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96, 2190ā€“2196.

    PubMedĀ  CASĀ  Google ScholarĀ 

  40. Bottomley P. A., Hardy C. J., and Roemer P. B. (1990) Phosphate metabolite imaging and concentration measurements in human heart by nuclear magnetic resonance. Magn. Reson. Med. 14, 425ā€“434.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. von Kienlin M., Beer M., Greiser A., et al. (2001) Advances in human cardiac 31P-MR spectroscopy: SLOOP and clinical applications. J. Magn. Reson. Imaging 13, 521ā€“527.

    ArticleĀ  Google ScholarĀ 

  42. Landschutz W., Meininger M., Beer M., et al. (1998) Concentration of human cardiac 31P-metabolites determined by SLOOP 31P-MRS. MAGMA 6, 155ā€“156.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Meininger M., LandschĆ¼tz W., Beer M., et al. (1999) Concentrations of human cardiac phosphorus metabolites determined by SLOOP 31P NMR spectroscopy. Magn. Reson. Med. 41, 657ā€“663.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Beer M., Seyfarth T., Sandstede J., et al. (2002) Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J. Am. Coll. Cardiol. 40, 1267ā€“1274.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Ingwall J., Kramer M., Fifer M., et al. (1985) The creatine kinase system in normal and diseased human myocardium. N. Engl. J. Med. 313, 1050ā€“1054.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Wallimann T. and Eppenberger H. M. (1990) The subcellular compartmentation of creatine kinase isozymes as a precondition for a proposed phosphoryl-creatine circuit. Prog. Clin. Biol. Res. 344, 877ā€“889.

    PubMedĀ  CASĀ  Google ScholarĀ 

  47. Bottomley P. A. and Weiss R. G. (1998) Non-invasive magnetic-resonance detection of creatine depletion in non-viable infarcted myocardium. Lancet 351, 714ā€“718.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Weiss R. G., Chatham J. C., Georgakopolous D., et al. (2002) An increase in the myocardial PCr/ATP ratio in GLUT4 null mice. FASEB J. 16, 613ā€“615.

    PubMedĀ  CASĀ  Google ScholarĀ 

  49. Szczepaniak L. S., Dobbins R. L., Metzger G. J., et al. (2003) Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn. Reson. Med. 49, 417ā€“423.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Szczepaniak L. S., Dobbins R. L., Stein D. T., and McGarry J. D. (2002) Bulk magnetic susceptibility effects on the assessment of intra-and extramyocellular lipids in vivo. Magn. Reson. Med. 47, 607ā€“610.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Schneider J. E., Tyler D. J., ten Hove M., et al. (2004) In vivo cardiac 1H-MRS in the mouse. Magn. Reson. Med. 52, 1029ā€“1035.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Neurohr K. J., Barrett E. J., and Shulman R. G. (1983) In vivo carbon-13 nuclear magnetic resonance studies of heart metabolism. Proc. Natl. Acad. Sci. USA 80, 1603ā€“1607.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Chance E. M., Seeholzer S. H., Kobayashi K., and Williamson J. R. (1983) Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J. Biol. Chem. 258, 13,785-13,794.

    Google ScholarĀ 

  54. Weiss R. G., Chacko V. P., Glickson J. D., and Gerstenblith G. (1989) Comparative 13C and 31P NMR assessment of altered metabolism during graded reductions in coronary flow in intact rat hearts. Proc. Natl. Acad. Sci. USA 86, 6426ā€“6430.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  55. Stevens A. N., Iles R. A., Morris P. G., and Griffiths J. R. (1982) Detection of glycogen in a glycogen storage disease by 13C nuclear magnetic resonance. FEBS Lett. 150, 489ā€“493.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Sillerud L. O. and Shulman R. G. (1983) Structure and metabolism of mammalian liver glycogen monitored by carbon-13 nuclear magnetic resonance. Biochemistry 22, 1087ā€“1094.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Canioni P., Alger J. R., and Shulman R. G. (1983) Natural abundance carbon-13 nuclear magnetic resonance spectroscopy of liver and adipose tissue of the living rat. Biochemistry 22, 4974ā€“4980.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Bottomley P. A., Hardy C. J., Roemer P. B., and Mueller O. M. (1989) Protondecoupled, Overhauser-enhanced, spatially localized carbon-13 spectroscopy in humans. Magn. Reson. Med. 12, 348ā€“363.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Weiss R. G., Chacko V. P., and Gerstenblith G. (1989) Fatty acid regulation of glucose metabolism in the intact beating rat heart assessed by carbon-13 NMR spectroscopy: the critical role of pyruvate dehydrogenase. J. Mol. Cell. Cardiol. 21, 469ā€“478.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Belke D. D., Larsen T. S., Lopaschuk G. D., and Sevenson D. L. (1999) Glucose and fatty acid metabolism in the isolated working mouse heart. Am. J. Phys. Regulatory Integrative Comp. Physiol. 277, R1210ā€“R1217.

    CASĀ  Google ScholarĀ 

  61. Goodwin G. W. and Taegtmeyer H. (1999) Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. Am. J. Physiol. Endocrinol. Metab. 277, E772ā€“E777.

    CASĀ  Google ScholarĀ 

  62. Oā€™Donnell J. M., Alpert N. A., White L. T., and Lewandowski E. D. (2002) Coupling of mitochondrial fatty acid uptake to oxidative flux in the intact heart. Biophys. J. 82, 11ā€“18.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  63. Kim R. J., Wu E., Rafael A., Chen E. L., et al. (2000) The use of contrastenhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343, 1445ā€“1453.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Horn, M. (2006). Cardiac Magnetic Resonance Spectroscopy. In: Prasad, P.V. (eds) Magnetic Resonance Imaging. Methods in Molecular Medicineā„¢, vol 124. Humana Press. https://doi.org/10.1385/1-59745-010-3:225

Download citation

  • DOI: https://doi.org/10.1385/1-59745-010-3:225

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-397-8

  • Online ISBN: 978-1-59745-010-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics