Skip to main content

In Situ Detection of Epstein—Barr Virus and Phenotype Determination of EBV-Infected Cells

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 326))

Summary

Epstein-Barr virus (EBV) establishes a lifelong infection of B cells. Consequently, EBV-carrying B cells are present in the peripheral blood as well as in lymphoid and nonlymphoid tissues of most individuals. As a result, the detection by polymerase chain reaction of EBV genomes in DNA extracts from tumor tissues does not permit conclusions as to the precise cellular source of the virus. For a meaningful analysis of EBV infection, it often is necessary to determine the cellular location of the virus using morphology-based techniques. In situ hybridization for the detection of the small EBVencoded RNAs (EBERs) has become the standard method for the detection of latent EBV infection. Owing to their abundance, the EBERs represent ideal targets for in situ hybridization using radiolabeled or nonradioactive probes. EBV has been detected in tumors of various lineages, and proliferation of nonneoplastic B cells may occur in the background of EBV-negative tumors. Thus, the assignment of EBV infection to a specific cell type may require double labeling techniques for the simultaneous detection of the virus and of cell lineage-specific gene products. Because of the heterogeneous composition of many EBV-associated tumors, gene expression analysis of EBV-infected cells in tissue sections also may require double labeling techniques. Here, methods are described for the In situ detection and phenotypic characterization of EBV-infected cells in the authors’ laboratories.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Thorley-Lawson D. A. and Babcock G. J. (1999) A model for persistent infection with Epstein-Barr virus: the stealth virus of human B cells. Life Sci. 14, 1433–1453.

    Article  Google Scholar 

  2. Niedobitek G., Herbst H., Young L. S., et al. (1992) Patterns of Epstein-Barr virus infection in non-neoplastic lymphoid tissue. Blood 79, 2520–2526.

    PubMed  CAS  Google Scholar 

  3. Hubscher S. G., Williams A., Davison S. M., Young L. S., and Niedobitek G. (1994) Epstein-Barr virus in inflammatory diseases of the liver and liver allografts: an in situ hybridization study. Hepatology 20, 899–907.

    Article  PubMed  CAS  Google Scholar 

  4. Niedobitek G. and Herbst H. (1991) Applications of in situ hybridization. Int. Rev. Exp. Pathol. 32, 1–56.

    PubMed  CAS  Google Scholar 

  5. Niedobitek G. and Herbst H. (2001) In situ detection of Epstein-Barr virus DNA and of viral gene products, in Epstein-Barr Virus Protocols (Wilson J. B., and May G. H. W., eds.), Totowa, NJ Humana Press, pp.79–91.

    Chapter  Google Scholar 

  6. Herbst H. and Niedobitek G. (2001) Phenotype determination of Epstein-Barr virus infected cells in tissue sections, in Epstein-Barr Virus Protocols (Wilson J. B., and May G. H. W., eds.), Totowa, Humana Press, pp.93–102.

    Chapter  Google Scholar 

  7. Niedobitek G. and Herbst H. (2003) In-situ Hybridisation in Histopathology, in Molecular Biology in Cellular Pathology (Crocker J., and Murray P. G., eds.,). Chichester, John Wiley and Sons, pp.19–47.

    Chapter  Google Scholar 

  8. Herrmann K., Frangou P., Middeldorp J., and Niedobitek G. (2002) Epstein-Barr virus replication in tongue epithelial cells. J. Gen. Virol. 83, 2995–2998.

    PubMed  CAS  Google Scholar 

  9. Hamilton-Dutoit S. J. and Pallesen G. (1994) Detection of Epstein-Barr virus small RNAs in routine paraffin sections using non-isotopic RNA/RNA in situ hybridization. Histopathology 25, 101–111.

    Article  PubMed  CAS  Google Scholar 

  10. International Agency for Research on Cancer. (1997) Epstein-Barr Virus and Kaposi’s Sarcoma Herpesvirus/Human Herpesvirus 8. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans vol. 70, Lyon, France: WHO.

    Google Scholar 

  11. Niedobitek G., Meru N., and Delecluse H-J. (2001) Epstein-Barr virus infection and human malignancies. Int. J. Exp. Pathol. 82, 149–170.

    Article  PubMed  CAS  Google Scholar 

  12. Trendell-Smith N. J., Agathanggelou A., Herbst H., Collins C. M. P., Rooney N., and Niedobitek G. (1995) Absence of Epstein-Barr virus in testicular germ cell tumours: a study of 21 cases using in situ hybridisation. J. Clin. Pathol. 48, M109–M110.

    Article  CAS  Google Scholar 

  13. Kawaguchi H., Miyashita T., Herbst H., et al. (1993) Epstein-Barr virus-infected T lymphocytes in Epstein-Barr virus-associated hemophagocytic syndrome. J. Clin. Invest. 92, 1444–1450.

    Article  PubMed  CAS  Google Scholar 

  14. Niedobitek G., Baumann I., Brabletz T., et al. (2000) Ho°kin’s disease and peripheral T-cell lymphoma: composite lymphoma with evidence of Epstein-Barr virus infection. J. Pathol. 191, 394–399.

    Article  PubMed  CAS  Google Scholar 

  15. Eliopoulos A. G. and Young L. S. (2001) LMP1 structure and signal transduction. Semin. Cancer Biol. 11, 435–444.

    Article  PubMed  CAS  Google Scholar 

  16. Herbst H., Steinbrecher E., Niedobitek G, et al. (1992) Distribution and phenotype of Epstein-Barr virus-harboring cells in Ho°kin’s disease. Blood 80, 484–491.

    PubMed  CAS  Google Scholar 

  17. Herbst H., Foss H-D., Samol J. et al. (1996) Frequent expression of interleukin-10 by Epstein-Barr virus-harboring tumor cells of Ho°kin’s disease. Blood 87, 2918–2929.

    PubMed  CAS  Google Scholar 

  18. Herbst H., Samol J., Foss H. D., Raff T., and Niedobitek G. (1997) Modulation of interleukin-6 expression in Ho°kin and Reed-Sternberg cells by Epstein-Barr virus. J. Pathol. 182, 299–306.

    Article  PubMed  CAS  Google Scholar 

  19. Spieker T., Kurth J., Küppers R., Rajewsky K., Bräuninger A., and Hansmann M-L. (2000) Molecular single-cell analysis of the clonal relationship of small Epstein-Barr virus-infected cells and Epstein-Barr virus-harboring Ho°kin and Reed/Sternberg cells in Ho°kin disease. Blood 96, 3133–3138.

    PubMed  CAS  Google Scholar 

  20. Foss H. D., Herbst H., Gottstein S., Demel G., Arauji I., and Stein H. (1996) Interleukin-8 in Ho°kin’s disease-preferential expression by reactive cells and association with neutrophil density. Am. J. Pathol. 148, 1229–1236.

    PubMed  CAS  Google Scholar 

  21. Cox K. H., DeLeon D. V., Angerer L. M., and Angerer R. C. (1984) Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev. Biol. 101, 485–502.

    Article  PubMed  CAS  Google Scholar 

  22. Wilcox J. N. (1993) Fundamental principles of in situ hybridization. J. Histochem. Cytochem. 41, 1725–1733.

    PubMed  CAS  Google Scholar 

  23. Poulsom R., Longcroft J. M., Jeffery R. E., Rogers L. A., and Steel J. H. (1998) A robust method for isotopic riboprobe in situ hybridisation to localise mRNAs in routine pathology specimens. Eur. J. Histochem. 42, 121–132.

    PubMed  CAS  Google Scholar 

  24. Yang H., Wanner I. B., Roper S. D., and Chaudhari N. (1999) An optimized method for in situ hybridization with signal amplification that allows the detection of rare mRNAs. J. Histochem. Cytochem. 47, 431–445.

    PubMed  CAS  Google Scholar 

  25. Hayashi S., Gillam I. C., Delaney A. D., and Tener G. M. (1978) Acetylation of chromosome squashes of Drosophila melanogaster decreases the background in autoradiographs from hybridization with (125I)-labeled RNA. J. Histochem. Cytochem. 26, 677–679.

    PubMed  CAS  Google Scholar 

  26. Meru N., Jung A., Baumann I., and Niedobitek G. (2002) Expression of the recombination activating genes in extrafollicular lymphocytes but no apparent re-induction in germinal centre reactions in human tonsils. Blood 99,531–537.

    Article  PubMed  CAS  Google Scholar 

  27. Shi S-R., Cote R. J., and Taylor C. R. (1997) Antigen retrieval immunohistochemistry: past, present, and future. J. Histochem. Cytochem. 45, 327–343.

    PubMed  CAS  Google Scholar 

  28. Höfler H., Pütz B., Ruhri C., Wirnsberger G., Klimpfinger M., and Smolle J. (1987) Simultaneous localization of calcitonin mRNA and peptide in a medullary thyroid carcinoma. Virchows Archiv B. Cell. Pathol. 54, 144–151.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Niedobitek, G., Herbst, H. (2006). In Situ Detection of Epstein—Barr Virus and Phenotype Determination of EBV-Infected Cells. In: Darby, I.A., Hewitson, T.D. (eds) In Situ Hybridization Protocols. Methods in Molecular Biology™, vol 326. Humana Press. https://doi.org/10.1385/1-59745-007-3:115

Download citation

  • DOI: https://doi.org/10.1385/1-59745-007-3:115

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-402-9

  • Online ISBN: 978-1-59745-007-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics