Quantitative Analysis of Telomerase Activity and Telomere Length in Domestic Animal Clones

  • Dean H. Betts
  • Steven Perrault
  • Lea Harrington
  • W. Allan King
Part of the Methods in Molecular Biology™ book series (MIMB, volume 325)


It has been speculated that incomplete epigenetic reprogramming of the somatic cell genome is the primary reason behind the developmental inefficiencies and postnatal abnormalities observed after nuclear transplantation in domestic animal clones. One chromosome structure that is altered in dividing somatic cells is telomere length—the terminal ends of linear chromosomes capped by repetitive sequences of G-rich noncoding DNA, (TTAGGG)n, and specific binding proteins. Telomeres are critical structures that function in maintaining chromosome stability and ensure the full replication of coding DNA by acting as a buffer to terminal DNA attrition due to the end replication problem. Telomere shortening limits cellular proliferation through a DNA damage signal activating permanent cell cycle arrest at a critical telomere length or through structural telomere alterations that prevents effective chromosome capping. Telomere-mediated signaling of cellular senescence has been established for many somatic cell types in vitro, except for germ cells, cancer lines, and regenerative tissues in which telomere length is maintained primarily by the ribonucleoprotein telomerase, a reverse transcriptase that synthesizes TTAGGG repeats de novo onto the chromosome ends. Telomere length discrepancies have been reported in animal clones as being shorter, no different, and even longer than in age-matched control animals, but the etiology is not yet understood. Possible explanations include differences in donor cell type and the efficiency of telomerase reprogramming. This chapter summarizes the conventional protocols and recent advances in telomere length and telomerase activity measurement that will help elucidate the mechanism(s) behind telomere length deregulation in somatic cell clones and its role in chromosomal instability, cellular senescence, and organismal aging in vivo.

Key Words

Telomere TRF Q-FISH telomerase TRAP RQ-TRAP animal cloning SCNT aging 


  1. 1.
    Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. S. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.CrossRefPubMedGoogle Scholar
  2. 2.
    Wakayama, T., Perry, A. C.F., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.CrossRefPubMedGoogle Scholar
  3. 3.
    Kato, Y., Tani, T., Sotomaru, Y., Kurokawa. K,, Kato. J,, Doguchi. H,, Yasue. H,, et al. (1998) Eight calves cloned from somatic cells of a single adult. Science 282, 2095–2098.CrossRefPubMedGoogle Scholar
  4. 4.
    Woods, G. L., White, K. L., Vanderwall, D. K., Li, G. P., Aston, K. I., Bunch, T. D., et al. (2003) A mule cloned from fetal cells by nuclear transfer. Science 301, 1063.CrossRefPubMedGoogle Scholar
  5. 5.
    Rideout, W. M. III, Eggan, K., and Jaenisch, R. (2001) Nuclear cloning and epigenetic reprogramming of the genome. Science 293, 1093–1098.CrossRefPubMedGoogle Scholar
  6. 6.
    Dean._ W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., et al. (2001) Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. USA 98, 13734–13738.CrossRefPubMedGoogle Scholar
  7. 7.
    Xue, F., Tian, X. C., Du, F., Kubota, C., Taneja, M., Dinnyes, A., Dai, Y., et al. (2002) Aberrant patterns of X chromosome inactivation in bovine clones. Nat. Genet. 31, 216–220.CrossRefPubMedGoogle Scholar
  8. 8.
    Humpherys, D., Eggan, K., Akutsu, H., Hochedlinger, K., Rideout, W. M. III, Biniszkiewicz, D., et al. (2001) Epigenetic instability in ES cells and cloned mice. Science 293, 95–97.CrossRefPubMedGoogle Scholar
  9. 9.
    Betts, D. H., Bordignon, V., Hill, J., Winger, Q., Westhusin, M., Smith, L., King, W. (2001) Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc. Natl. Acad. Sci. USA 98, 1077–1082.CrossRefPubMedGoogle Scholar
  10. 10.
    Miyashita, N., et al. (2002) Remarkable differences in telomere lengths among cloned cattle derived from different cell types. Biol. Reprod. 66, 1649–1655.CrossRefPubMedGoogle Scholar
  11. 11.
    Allshire, R. C., Dempster, M., and Hastie, N. D. (1989) Human telomeres contain at least three types of G-rich repeats distributed non-randomLy. Nucleic Acids Res. 17, 4611–4627.CrossRefPubMedGoogle Scholar
  12. 12.
    Preston, R. J. (1997) Telomeres, telomerase and chromosome stability. Radiat. Res. 147, 529–534.CrossRefPubMedGoogle Scholar
  13. 13.
    Klobutcher, L. A., Swanton, M. T., Donini, P., and Prescott, D. M. (1981) All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3′ terminus. Proc. Natl. Acad. Sci. USA 78, 3015–3019.CrossRefPubMedGoogle Scholar
  14. 14.
    Wright, W. E., Tesmer, V. M., Huffman, K. E., Levene, S. D., and Shay, J. W. (1997) Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11, 2801–2809.CrossRefPubMedGoogle Scholar
  15. 15.
    McElligott, R., and Wellinger, R. J. (1997) The terminal DNA structure of mammalian chromosomes. EMBO J. 16, 3705–3714.CrossRefPubMedGoogle Scholar
  16. 16.
    van Steensel, B., Smogorzewska, A., and de Lange, T. (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413.CrossRefPubMedGoogle Scholar
  17. 17.
    Huffman, K. E., Levene, S. D., Tesmer, V. M., Shay, J. W., and Wright, W. E. (2000) Telomere shortening is proportional to the size of the 3′ G-rich telomeric overhang. J. Biol. Chem. 275, 19719–19722.CrossRefPubMedGoogle Scholar
  18. 18.
    McKee, B. D. (2004) Homologous pairing and chromosome dynamics in meiosis and mitosis. Biochim. Biophys. Acta 1677, 165–180.PubMedGoogle Scholar
  19. 19.
    Allsopp, R. C., and Harley, C. B. (1995) Evidence for a critical telomere length in senescent human fibroblasts. Exp. Cell Res. 219, 130–136.CrossRefPubMedGoogle Scholar
  20. 20.
    Harley, C. B., Flutcher, A. B., and Greider, C. W. (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460.CrossRefPubMedGoogle Scholar
  21. 21.
    Harley, C. B., Vaziri, H., Counter, C. M., and Allsopp, R. C. (1992) The telomere hypothesis of cellular aging. Exp. Gerontol. 27, 375–382.CrossRefPubMedGoogle Scholar
  22. 22.
    Stewart, S. A., Ben-Porath, I., Carey, V. J., O’Connor, B. F., Hahn, W. C., and Weinberg, R. A. (2003) Erosion of the telomeric single-strand overhang at replicative senescence. Nat. Genet. 33, 492–496.CrossRefPubMedGoogle Scholar
  23. 23.
    Karlseder, J., Smogorzewska, A., de Lange, T. (2002) Senescence induced by altered telomere state, not telomere loss. Science 295, 2446–2449.CrossRefPubMedGoogle Scholar
  24. 24.
    Li, G. Z., Eller, M. S., Firoozabadi, R., and Gilchrest, B. A. (2003) Evidence that exposure of the telomere 3′ overhang sequence induces senescence. Proc. Natl. Acad. Sci. USA 100, 527–531.CrossRefPubMedGoogle Scholar
  25. 25.
    Greider, C. W., and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413.CrossRefPubMedGoogle Scholar
  26. 26.
    Greider, C. W., and Blackburn, E. H. (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337.CrossRefPubMedGoogle Scholar
  27. 27.
    Collins, K., Kobayashy, R., and Greider, C. W. (1995) Purification of Tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme. Cell 81, 677–686.CrossRefPubMedGoogle Scholar
  28. 28.
    Counter, C. M., Meyerson, M., Eaton, E. N., and Weinberg, R. A. (1997) The catalytic subunit of yeast telomerase. Proc. Natl. Acad. Sci. USA 94, 9202–9207.CrossRefPubMedGoogle Scholar
  29. 29.
    Lingner, J., Hughes, T. R., Shevchenko, A., Mann, M., Lundblad, V., and Cech, T. R. (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567.CrossRefPubMedGoogle Scholar
  30. 30.
    Nakayama, J., Saito, M., Nakamura, H., Matsuura, A., and Ishikawa, F. (1997) TLP1: a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell 88, 875–884.CrossRefPubMedGoogle Scholar
  31. 31.
    Kilian, A., Bowtell. D. D. L., Abud, H. E., Hime, G. R., Venter, D. J., Keese, P. K., et al. (1997) Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum. Mol. Genet. 6, 2011–2019.CrossRefPubMedGoogle Scholar
  32. 32.
    Meyerson, M., Counter, C. M., Eaton, E. N., Ellisen, L. W., Steiner, P., Caddle, S. D., et al. (1997) hEST2, the putative human telomerase catalytic subunit gene is up-regulated in tumor cells and during immortalization. Cell 90, 785–795.CrossRefPubMedGoogle Scholar
  33. 33.
    Ulaner, G. A., and Giudice, L. C. (1997) Developmental regulation of telomerase activity in human fetal tissues during gestation. Mol. Hum. Reprod. 3, 769–773.CrossRefPubMedGoogle Scholar
  34. 34.
    Sharma, H. W., Sokoloski, J. A., Perez, J. R., Maltese, J. Y., Sartorelli, A. C., Stein, C. A., et al. (1995) Differentiation of immortal cells inhibits telomerase activity. Proc. Natl. Acad. Sci. USA 92, 12343–12346.CrossRefPubMedGoogle Scholar
  35. 35.
    Counter, C. M., Avillion, A. A., Lefeuvre, C. E., Stewart, N. G., Greider, C. W., Harley, C. B., et al. (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929.PubMedGoogle Scholar
  36. 36.
    Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., et al. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015.CrossRefPubMedGoogle Scholar
  37. 37.
    Harle-Bachor, C., and Boukamp, P. (1996) Telomerase activity in the regenerative basal layer of the epidermis in human skin and in immortal and carcinoma-derived skin keratinocytes. Proc. Natl. Acad. Sci. USA 93, 6476–6481.CrossRefPubMedGoogle Scholar
  38. 38.
    Wright, W. E., Brasiskyte, D., Piatyszek, M. A., and Shay, J. W. (1996) Experimental elongation of telomeres extends the lifespan of immortal x normal cell hybrids. EMBO J. 15, 1734–1741.PubMedGoogle Scholar
  39. 39.
    Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C.-P., Morin, G. B., et al. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352.CrossRefPubMedGoogle Scholar
  40. 40.
    Nakayama, J.-I., Tahara, H., Tahara, E., Saito, M., Ito, K., Nakamura, H., et al. (1998) Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat. Genet. 18, 65–68.CrossRefPubMedGoogle Scholar
  41. 41.
    Lee, H.-W., Blasco, M. A., Gottlieb, G. J., Horner, J. W. II, Greider, C. W., and DePinho, R. A. (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574.CrossRefPubMedGoogle Scholar
  42. 42.
    Cherif, H., Tarry, J. L., Ozanne, S. E., and Hales, C. N. (2003) Ageing and telomeres: a study into organ-and gender-specific telomere shortening. Nucleic Acids Res. 31, 1576–1583.CrossRefPubMedGoogle Scholar
  43. 43.
    Miller, R. A. (1996) The aging immune system: primer and prospectus. Science 273, 70–74.CrossRefPubMedGoogle Scholar
  44. 44.
    D’Ippolito, G., Schiller, P. C., Ricordi, C., Roos, B. A., and Howard, G. A. (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J. Bone Miner. Res. 14, 1115–1122.CrossRefPubMedGoogle Scholar
  45. 45.
    Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363–9367.CrossRefPubMedGoogle Scholar
  46. 46.
    Shiels, P. G., Kind, A. J., Campbell, K. H. S., Waddington, D., Wilmut, I., Colman, A., et al (1999a) Analysis of telomere lengths in cloned sheep. Nature 399, 316–317.CrossRefPubMedGoogle Scholar
  47. 47.
    Shiels, P. G., Kind, A. J., Campbell, K. H. S., Wilmut, I., Waddington, D., Colman, A., et al. (1999b) Analysis of telomere length in dolly, a sheep derived by nuclear transfer. Cloning 1, 119–125.CrossRefPubMedGoogle Scholar
  48. 48.
    Clark, A. J., Ferrier P., Aslam S., Burl, S., Denning, C., Wylie, D., et al. (2003) Proliferative lifespan is conserved after nuclear transfer. Nat. Cell Biol. 5, 535–538.CrossRefPubMedGoogle Scholar
  49. 49.
    Rhind, S., Cui, W., King, T., Ritchie, W., Wylie, D., and Wilmut, I. (2004) Dolly: A final Report. Reprod. Fertil. Devel. 16, 156.CrossRefGoogle Scholar
  50. 50.
    Kubota, C., Tian, X. C., and Yang, X. (2004) Serial bull cloning by somatic cell nuclear transfer. Nat. Biotechnol. 22, 693–694.CrossRefPubMedGoogle Scholar
  51. 51.
    Jiang, L., Carter, D. B., Xu, J., Yang, X., Prather, R. S., and Tian, X. C. (2004) Telomere lengths in cloned transgenic pigs. Biol. Reprod. 70, 1589–1593.CrossRefPubMedGoogle Scholar
  52. 52.
    Tian, X. C., Xu, J., and Yang, X. (2000) Normal telomere lengths found in cloned cattle. Nat. Genet. 26, 272–273.CrossRefPubMedGoogle Scholar
  53. 53.
    Lanza, R. P., Cibelli, J. B., Blackwell, C., Cristofalo, V. J., Francis, M. K., Baerlocher, G. M., et al. (2000) Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 288, 665–669.CrossRefPubMedGoogle Scholar
  54. 54.
    Kuhholzer-Cabot, B., and Brem, G. (2002) Aging of animals produced by somatic cell nuclear transfer. Exp. Gerontol. 37, 1317–1323.CrossRefPubMedGoogle Scholar
  55. 55.
    Betts, D. H., and King, W. A. (1999) Telomerase activity and telomere detection during early bovine development. Dev. Genet. 25, 397–403.CrossRefPubMedGoogle Scholar
  56. 56.
    Holt, S. E., Aisner, D. L., Shay, J. W., and Wright, W. E. (1997) Lack of cell cycle regulation of telomerase activity in human cells. Proc. Natl. Acad. Sci. USA 944, 10687–10692.CrossRefGoogle Scholar
  57. 57.
    Xu, J., and Yang, X. (2001) Telomerase activity in early bovine embryos derived from parthenogenetic activation and nuclear transfer. Biol. Reprod. 64, 770–774.CrossRefPubMedGoogle Scholar
  58. 58.
    Wege, H., Chui, M. S., Le, H. T., Tran, J. M., and Zern, M. A. (2003) SYBR Green real-time telomeric repeat amplification protocol for the rapid quantification of telomerase activity. Nucleic Acids Res. 31, e3.Google Scholar
  59. 59.
    Maniatis, T., Fritsch, E. F., Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  60. 60.
    Poon, S. S., Martens, U. M., Ward, R. K., and Lansdorp, P. M. (1999) Telomere length measurements using digital fluorescence microscopy. Cytometry 36, 267–278.CrossRefPubMedGoogle Scholar
  61. 61.
    Rufer, N., Dragowska, W., Thornbury, G., Roosnek, E., and Lansdorp, P. M. (1998) Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol. 16, 743–747.CrossRefPubMedGoogle Scholar
  62. 62.
    O’Sullivan, J. N., Finley, J. C., Risques, R. A., Shen, W. T., Gollahon, K. A., Moskovitz, A. H., et al. (2004) Telomere length assessment in tissue sections by quantitative FISH: image analysis algorithms. Cytometry 58A, 120–131.CrossRefGoogle Scholar
  63. 63.
    Zijlmans, J. M., Marten, U. M. Poon, S. S. S., Raap, A. K., Tanke, H. J., Ward, R. K., et al. (1997) Telomeres in the mouse have large inter-hromosomal variations in the number of T2AG3 repeats. Proc. Natl. Acad. Sci. USA 94, 7423–7428.CrossRefPubMedGoogle Scholar
  64. 64.
    Cawthon, R. M. (2002) Telomere measurment by quantitative PCR. Nucleic Acids Res. 30, e47.CrossRefPubMedGoogle Scholar
  65. 65.
    Zhu, L., Hathcock, K. S., Hande, P., Lansdorp, P. M., Seldin, M. F., and Hodes, R. J. (1998) Telomere length regulation in mice is linked to a novel chromosome locus. Proc. Natl. Acad. Sci. USA 95, 8648–8653.CrossRefPubMedGoogle Scholar
  66. 66.
    Kozik, A., Bradbury, E. M., and Zalensky, A. O. (2000) Identification and characterization of a bovine sperm protein that binds specifically to single-stranded telomeric deoxyribonucleic acid. Biol. Reprod. 62, 340–346.CrossRefPubMedGoogle Scholar
  67. 67.
    Garcia-Cao, M., O’Sullivan, R., Peters, A. H., Jenuwein, T., and Blasco, M. A. (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 36, 94–99.CrossRefPubMedGoogle Scholar
  68. 68.
    Simerly, C., Dominko, T., Navara, C., Payne, C., Capuano, S., Gosman, G., et al. (2003) Molecular correlates of primate nuclear transfer failures. Science 300, 297.CrossRefPubMedGoogle Scholar
  69. 69.
    Bureau, W. S., Bordignon, V., Leveillee, C., Smith, L. C., and King, W. A. (2003) Assessment of chromosomal abnormalities in bovine nuclear transfer embryos and in their donor cells. Cloning Stem Cells 5, 123–132.CrossRefPubMedGoogle Scholar
  70. 70.
    Ogonuki, N., Inoue, K., Yamamoto, Y., Noguchi, Y., Tanemura, K., Suzuki, O., et al. (2002) Early death of mice cloned from somatic cells. Nat. Genet. 30, 253–254.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Dean H. Betts
    • 1
  • Steven Perrault
    • 1
  • Lea Harrington
    • 2
    • 3
  • W. Allan King
    • 1
  1. 1.Department of Biomedical Sciences, Ontario Veterinary CollegeUniversity of GuelphGuelphCanada
  2. 2.The Department of Medical BiophysicsThe University of TorontoToronto
  3. 3.Princess Margaret HospitalTorontoCanada

Personalised recommendations