β-Glucuronidase as Reporter Gene

Advantages and Limitations
  • Kye-Won Kim
  • Vincent R. Franceschi
  • Laurence B. Davin
  • Norman G. Lewis
Part of the Methods in Molecular Biology™ book series (MIMB, volume 323)


The β-glucuronidase (GUS) gene is used extensively in plant biology studies; this analysis summarizes its advantages and limitations. With the advances in genomic sequencing and computational analyses (including bioinformatics), its application in the study of plant gene expression is now an integral component of modern day plant science. This chapter focuses on the detailed challenges of carrying out GUS studies for both qualitative and quantitative analyses, including the increasing employment of GUS from Bacillus strains, rather than E. coli; the Bacillus GUS genes encode proteins with enhanced properties, such as both increased thermostability and stability in the presence of crosslinking fixatives.

Key Words

β-glucuronidase (GUS) GUS-promoter fusions Arabidopsis Cruciferae gene expression localization thermostability fixatives 


  1. 1.
    Sabatini, S., Beis, D., Wolkenfelt, H., et al. (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472.CrossRefPubMedGoogle Scholar
  2. 2.
    Kim, M. K., Jeon, J.-H., Davin, L. B., and Lewis, N. G. (2002) Monolignol radical-radical coupling networks in western red cedar and Arabidopsis and their evolutionary implications. Phytochemistry 61, 311–322.CrossRefPubMedGoogle Scholar
  3. 3.
    Merkouropoulos, G. and Shirsat, A. H. (2003) The unusual Arabidopsis extensin gene atExt1 is expressed throughout plant development and is induced by a variety of biotic and abiotic stresses. Planta 217, 356–366.CrossRefPubMedGoogle Scholar
  4. 4.
    James, V. A., Worland, B., Snape, J. W., and Vain, P. (2004) Strategies for precise quantification of transgene expression levels over several generations in rice. J. Exp. Bot. 55, 1307–1313.CrossRefPubMedGoogle Scholar
  5. 5.
    Fizames, C., Muños, S., Cazettes, C., et al. (2004) The Arabidopsis root transcriptome by serial analysis of gene expression. Gene identification using the genome sequence. Plant Physiol. 134, 67–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Jefferson, R. A., Burgess, S. M., and Hirsh, D. (1986) β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA 83, 8447–8451.CrossRefPubMedGoogle Scholar
  7. 7.
    Gallagher, S. R., ed. (1992) GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, San Diego, CA.Google Scholar
  8. 8.
    Jefferson, R. A. and Mayer, J. E. (2003) Microbial β-glucuronidase genes, gene products and uses thereof. U.S. Patent no. 6,641,996, 103 pp.Google Scholar
  9. 9.
    Tussey Bracey, L. and Paigen, K. (1987) Changes in translational yield regulate tissue-specific expression of β-glucuronidase. Proc. Natl. Acad. Sci. USA 84, 9020–9024.CrossRefGoogle Scholar
  10. 10.
    Naleway, J. J. (1992). Histochemical, spectrophotometric, and fluorometric GUS substrates, in GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression (Gallagher, S. R., ed.), Academic Press, San Diego, CA, pp. 61–76.Google Scholar
  11. 11.
    De Block, M. and van Lijsebettens, M. (1998) β-Glucuronidase enzyme histochemistry on semithin sections of plastic-embedded Arabidopsis explants, in Methods in Molecular Biology (Martínez-Zapater, J. M. and Salinas, J., eds.), Vol. 82, Humana Press, Totowa, NJ, pp. 397–407.Google Scholar
  12. 12.
    Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.PubMedGoogle Scholar
  13. 13.
    Curtis, M. D. and Grossniklaus, U. (2003) A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462–469.CrossRefPubMedGoogle Scholar
  14. 14.
    Hu, C. Y., Chee, P. P., Chesney, R. H., Zhou, J. H., Miller, P. D., and O’Brien, W. T. (1990) Intrinsic GUS-like activities in seed plants. Plant Cell Rep. 9, 1–5.CrossRefGoogle Scholar
  15. 15.
    Plegt, L. and Bino, R. J. (1989) β-Glucuronidase activity during development of the male gametophyte from transgenic and non-transgenic plants. Mol. Gen. Genet. 216, 321–327.CrossRefGoogle Scholar
  16. 16.
    Mantis, J. and Tague, B. W. (2000) Comparing the utility of β-glucuronidase and green fluorescent protein for detection of weak promoter activity in Arabidopsis thaliana. Plant Mol. Biol. Rep. 18, 319–330.CrossRefGoogle Scholar
  17. 17.
    Koizumi, K., Sugiyama, M., and Fukuda, H. (2000) A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question. Development 127, 3197–3204.PubMedGoogle Scholar
  18. 18.
    von Arnim, A. G. and Deng, X.-W. (1994) Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79, 1035–1045.CrossRefGoogle Scholar
  19. 19.
    Malamy, J. E. and Benfey, P. N. (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124, 33–44.PubMedGoogle Scholar
  20. 20.
    Tsugeki, R. and Fedoroff, N. V. (1999) Genetic ablation of root cap cells in Arabidopsis. Proc. Natl. Acad. Sci. USA 96, 12,941–12,946.CrossRefPubMedGoogle Scholar
  21. 21.
    Oono, Y., Ooura, C., Rahman, A., Aspuria, E. T., Hayashi, K.-i., Tanaka, A., and Uchimiya, H. (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol. 133, 1135–1147.CrossRefPubMedGoogle Scholar
  22. 22.
    Verica, J. A., Chae, L., Tong, H., Ingmire, P., and He, Z.-H. (2003) Tissue-specific and developmentally regulated expression of a cluster of tandemly arrayed cell wall-associated kinase-like kinase genes in Arabidopsis. Plant Physiol. 133, 1732–1746.CrossRefPubMedGoogle Scholar
  23. 23.
    Javot, H., Lauvergeat, V., Santoni, V., et al. (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15, 509–522.CrossRefPubMedGoogle Scholar
  24. 24.
    Denekamp, M. and Smeekens, S. C. (2003) Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol. 132, 1415–1423.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim, M. K., Choi, J.-W., Jeon, J.-H., Franceschi, V. R., Davin, L. B., and Lewis, N. G. (2002) Specimen block counter-staining for localization of GUS expression in transgenic Arabidopsis and tobacco. Plant Cell Rep. 21, 35–39.CrossRefPubMedGoogle Scholar
  26. 26.
    Goujon, T., Minic, Z., El Amrani, A., et al. (2003) AtBXL1, a novel higher plant (Arabidopsis thaliana) putative β-xylosidase gene, is involved in secondary cell wall metabolism and plant development. Plant J. 33, 677–690.CrossRefPubMedGoogle Scholar
  27. 27.
    Groover, A. T., Fontana, J. R., Arroyo, J. M., Yordan, C., McCombie, W. R., and Martienssen, R. A. (2003) Secretion trap tagging of secreted and membrane-spanning proteins using Arabidopsis gene traps. Plant Physiol. 132, 698–708.CrossRefPubMedGoogle Scholar
  28. 28.
    Holding, D. R. and Springer, P. S. (2002) The Vascular Prepattern enhancer trap marks early vascular development in Arabidopsis. Genesis 33, 155–159.CrossRefPubMedGoogle Scholar
  29. 29.
    Chan, M.-T., Chao, Y.-C., and Yu, S.-M. (1994) Novel gene expression system for plant cells based on induction of α-amylase promoter by carbohydrate starvation. J. Biol. Chem. 269, 17,635–17,641.PubMedGoogle Scholar
  30. 30.
    Jenik, P. D. and Irish, V. F. (2000) Regulation of cell proliferation patterns by homeotic genes during Arabidopsis floral development. Development 127, 1267–1276.PubMedGoogle Scholar
  31. 31.
    Weigel, D. and Glazebrook, J., eds. (2002) Arabidopsis: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  32. 32.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.CrossRefPubMedGoogle Scholar
  33. 33.
    Kosugi, S., Ohashi, Y., Nakajima, K., and Arai, Y. (1990) An improved assay for β-glucuronidase in transformed cells: methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Sci. 70, 133–140.CrossRefGoogle Scholar
  34. 34.
    Sessions, A., Weigel, D., and Yanofsky, M. F. (1999) The Arabidopsis thaliana MERISTEM LAYER 1 promoter specifies epidermal expression in meristems and young primordia. Plant J. 20, 259–263.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Kye-Won Kim
    • 1
  • Vincent R. Franceschi
    • 2
  • Laurence B. Davin
    • 1
  • Norman G. Lewis
    • 1
  1. 1.Institute of Biological ChemistryWashington State UniversityPullman
  2. 2.Swammerdam Institute of Life ScienceUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations