In Planta Agrobacterium-Mediated Transformation by Vacuum Infiltration

  • Brian W. Tague
  • Joanna Mantis
Part of the Methods in Molecular Biology™ book series (MIMB, volume 323)


In planta Agrobacterium-mediated transformation using vacuum infiltration results in transgenic Arabidopsis thaliana without the use of sterile conditions or plant regeneration. Plants are grown in pots, in standard potting mix. Agrobacterium tumefaciens, carrying an appropriate plant transformation vector, is suspended in an infiltration medium that contains, at a minimum, sucrose and the surfactant Silwet L-77. Flower buds are immersed in the suspension of A. tumefaciens. The application of a vacuum drives the bacteria into the intercellular air spaces. A portion of the Agrobacterium Ti plasmid known as the T-DNA region, which has been engineered to carry a selectable marker, becomes integrated into the plant genomic DNA. Plants are allowed to set seed. Seeds are germinated in selective conditions to recover transformants.

Key Words

In planta transformation Agrobacterium tumefaciens Arabidopsis thaliana vacuum infiltration 


  1. 1.
    Feldmann, K. A. and Marks, M. D. (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Molec. Gen. Genet. 208, 1–9.CrossRefGoogle Scholar
  2. 2.
    Chang, S. S., Park, S. K., Kim, B. C., Kang, B. J., Kim, D. U., and Nam, H. G. (1994) Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. Plant J. 5, 551–558.CrossRefGoogle Scholar
  3. 3.
    Katavic, V., Haughn, G. W., Reed, D., Marin, M., and Kunst, L. (1994) In planta transformation of Arabidopsis thaliana. Molec. Gen. Genet. 245, 363–370.CrossRefPubMedGoogle Scholar
  4. 4.
    Bechtold, N., Ellis, J., and Pelletier, G. (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comp. Rend. L’Acad. des Sci. Serie III 316, 1194–1199.Google Scholar
  5. 5.
    Bechtold, N. and Pelletier, G. (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration, in Arabidopsis Protocols (Martinez-Zapater, J. M. and Salinas, J., eds.) Humana Press, Totowa, NJ, pp. 259–266.CrossRefGoogle Scholar
  6. 6.
    Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.CrossRefPubMedGoogle Scholar
  7. 7.
    Richardson, K., Fowler, S., Pullen, C., Skelton, C., Morris, B., and Putterill, J. (1998) T-DNA tagging of a flowering-time gene and improved gene transfer by in planta transformation of Arabidopsis. Austr. J. Plant Physiol. 25, 125–130.CrossRefGoogle Scholar
  8. 8.
    Mysore, K. S., Kumar, C. T. R., and Gelvin, S. B. (2000) Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J. 21, 9–16.CrossRefPubMedGoogle Scholar
  9. 9.
    Ausubel, F., Brent, R., Kingston, R., Moore, D., Seidman, J., and Smith, J., eds. (1995) Current Protocols in Molecular Biology, 3rd ed. Wiley, New York.Google Scholar
  10. 10.
    Ditta, G., Stanfield, S., Corbin, D., and Helinski, D. R. (1980) Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA 77, 7347–7351.CrossRefPubMedGoogle Scholar
  11. 11.
    Tzfira, T. Jensen, C. S., Wang, W., Zuker, A., Vinocur, B., Altman, A., and Vainstein, A. (1997) Transgenic Populus tremula: a step-by-step protocol of its Agrobacterium-mediated transformation. Plant Molec. Biol. Rep. 15, 219–235.CrossRefGoogle Scholar
  12. 12.
    Qing, C. M., Fan, L., Lei, Y., Bouchez, D., Tourneur, C., Yan, L., and Robaglia, C. (2000) Transformation of pakchoi (Brassica rapa L. ssp chinesis) by Agrobacterium infiltration. Molec. Breed. 6, 67–72.CrossRefGoogle Scholar
  13. 13.
    Curtis, I. and Nam, H. (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method—plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res. 10, 363–371.CrossRefPubMedGoogle Scholar
  14. 14.
    Tague, B. (2001) Germ-line transformation of Arabidopsis lasiocarpa. Transgenic Res. 10, 259–267.CrossRefPubMedGoogle Scholar
  15. 15.
    Trieu, A. T., Burleigh, S. H., Kardailsky, I. V., et al. (2000) Transformation of Medicago truncaluta via infiltration of seedlings or flowering plants with Agrobacterium. Plant J. 22, 531–541.CrossRefPubMedGoogle Scholar
  16. 16.
    Kojima, M. Shiojri, H., Nogawa, M., et al. (2004) In planta transformation of kenaf plants (Hibiscus cannabinus var. aokawa No. 3) by Agrobacterium tumefaciens. J. Biosci Bioengr. 98, 136–139.Google Scholar
  17. 17.
    Chung, M. H., Chen, M. K., and Pan, S. M. (2000) Floral spray transformation can efficiently generate Arabidopsis transgenic plants. Transgenic Res. 9, 471–476.CrossRefPubMedGoogle Scholar
  18. 18.
    Bechtold, N., Jaudeau, B., Jolivet, S., Mabo, B., Vezon, D., Voicin, R., and Pelletier, G. (2000) The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics. 155, 1875–1887.PubMedGoogle Scholar
  19. 19.
    Bechtold, N., Jolivet, S., Voicin, R., and Pelletier, G. (2003) The endosperm and the embryo of Arabidopsis thaliana are independently transformed through infiltration by Agrobacterium tumefaciens. Transgenic Res. 12, 509–517.CrossRefPubMedGoogle Scholar
  20. 20.
    Bent, A. F. (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol. 124, 1540–1547.CrossRefPubMedGoogle Scholar
  21. 21.
    Desfeux, C., Clough, S. J., and Bent, A. F. (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the floral-dip method. Plant Physiol. 123, 895–904.CrossRefPubMedGoogle Scholar
  22. 22.
    Martinez-Trujillo, M., Limones-Briones, V., Cabrera-Ponce, L., and Herrera-Estrella, L. (2004) Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Molec. Biol. Rep. 22, 63–70.CrossRefGoogle Scholar
  23. 23.
    Haseloff, J., Siemering, K. R., Prasher, D. C., and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Acad. Natl. Sci. USA 94, 2122–2127.CrossRefGoogle Scholar
  24. 24.
    Mylne, J. and Botella, J. R. (1998) Binary vectors for sense and antisense expression of Arabidopsis ESTs. Plant Molec. Biol. Report. 16, 257–262.CrossRefGoogle Scholar
  25. 25.
    Joersbo, M. (2001) Advances in the selection of transgenic plants using non-antibiotic marker genes. Physiol. Plant. 111, 269–272.CrossRefPubMedGoogle Scholar
  26. 26.
    Todd, R. and Tague, B. W. (2001) Phosphomannose isomerase: a versatile selectable marker for Arabidopsis thaliana germ-line transformation. Plant Molec. Biol. Rep. 19, 307–319.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Brian W. Tague
    • 1
  • Joanna Mantis
    • 1
  1. 1.Department of BiologyWake Forest UniversityWinston-Salem

Personalised recommendations