Using Information From Public Arabidopsis Databases to Aid Research

  • Margarita Garcia-Hernández
  • Leonore Reiser
Part of the Methods in Molecular Biology™ book series (MIMB, volume 323)

Abstract

The volume of Arabidopsis information has increased enormously in recent years as a result of the sequencing of the genome and other large-scale genomic projects. Much of the data are stored in public databases, where data are organized, analyzed, and made freely accessible to the research community. These databases are resources that researchers can utilize for making predictions and developing testable hypotheses. The methods in this chapter describe ways to access and utilize Arabidopsis data and genomic resources found in databases.

Key Words

Data mining database genomics gene expression bioinformatics computational biology Arabidopsis 

References

  1. 1.
    Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.CrossRefGoogle Scholar
  2. 2.
    Schoof, H., Ernst, R., Nazarov, V., Pfeifer, L., Mewes, H. W., and Mayer, K. F. (2004) MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics. Nucleic Acids Res. 32, Database issue, D373–D376.CrossRefPubMedGoogle Scholar
  3. 3.
    Wortman, J. R., Haas, B. J., Hannick, L. I., et al. (2003) Annotation of the Arabidopsis genome. Plant Physiol. 132, 461–468.CrossRefPubMedGoogle Scholar
  4. 4.
    Garcia-Hernandez, M., Berardini, T. Z., Chen, G., et al. (2002) TAIR: a resource for integrated Arabidopsis data. Funct. Integr. Genomics 2, 239–253.CrossRefPubMedGoogle Scholar
  5. 5.
    Huala, E., Dickerman, A. W., Garcia-Hernandez, M., et al. (2001) The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res. 29, 102–105.CrossRefPubMedGoogle Scholar
  6. 6.
    Rhee, S. Y., Beavis, W., Berardini, T. Z., et al. (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res. 31, 224–228.CrossRefPubMedGoogle Scholar
  7. 7.
    Berardini, T. Z., Mundodi, S., Reiser, L., et al. (2004) Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol. 135, 745–755.CrossRefPubMedGoogle Scholar
  8. 8.
    Alonso, J. M., Stepanova, A. N., Leisse, T. J., et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657.CrossRefPubMedGoogle Scholar
  9. 9.
    Anderle, P., Duval, M., Draghici, S., et al. (2003) Gene expression databases and data mining. Biotechniques Suppl, 36–44.Google Scholar
  10. 10.
    Haas, B. J., Volfovsky, N., Town, C. D., et al. (2002) Full-length messenger RNA sequences greatly improve genome annotation. Genome Biol. 3, RESEARCH0029.Google Scholar
  11. 11.
    Frishman, D., Albermann, K., Hani, J., Heumann, K., Metanomski, A., Zollner, A., and Mewes, H. W. (2001) Functional and structural genomics using PEDANT. Bioinformatics 17, 44–57.CrossRefPubMedGoogle Scholar
  12. 12.
    Mewes, H. W., Amid, C., Arnold, R., et al. (2004) MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res. 32 Database issue, D41–D44.CrossRefPubMedGoogle Scholar
  13. 13.
    Ashburner, M., Ball, C. A., Blake, J. A., et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29.CrossRefPubMedGoogle Scholar
  14. 14.
    Wisman, E. and Ohlrogge, J. (2000) Arabidopsis microarray service facilities. Plant Physiol. 124, 1468–1471.CrossRefPubMedGoogle Scholar
  15. 15.
    Craigon, D. J., James, N., Okyere, J., Higgins, J., Jotham, J., and May, S. (2004) NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service. Nucleic Acids Res. 32 Database issue, D575–D577.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang, X., Hessner, M. J., Wu, Y., Pati, N., and Ghosh, S. (2003) Quantitative quality control in microarray experiments and the application in data filtering, normalization and false positive rate prediction. Bioinformatics 19, 1341–1347.CrossRefPubMedGoogle Scholar
  17. 17.
    Quackenbush, J. (2001) Computational analysis of microarray data. Nat. Rev. Genet. 2, 418–427.CrossRefPubMedGoogle Scholar
  18. 18.
    Kerr, K. M., Churchill, G. A. (2001) Statistical design and the analysis of gene expression. Genet. Res. 77, 123–128.PubMedGoogle Scholar
  19. 19.
    Brenner, S., Johnson, M., Bridgham, J., et al. (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 18, 630–634.CrossRefPubMedGoogle Scholar
  20. 20.
    Wheeler, D. L., Church, D. M., Edgar, R., et al. (2004) Database resources of the National Center for Biotechnology Information: update. Nucl. Acids. Res. 32, D35–D40.CrossRefPubMedGoogle Scholar
  21. 21.
    Mueller, L. A., Zhang, P., and Rhee, S. Y. (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol. 132, 453–460.CrossRefPubMedGoogle Scholar
  22. 22.
    Ichikawa, T., Nakazawa, M., Kawashima, M., et al. (2003) Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation. Plant J. 36, 421–429.CrossRefPubMedGoogle Scholar
  23. 23.
    Colbert, T., Till, B. J., Tompa, R., et al. (2001) High-throughput screening for induced point mutations. Plant Physiol. 126, 480–484.CrossRefPubMedGoogle Scholar
  24. 24.
    McCallum, C. M., Comai, L., Greene, E. A., and Henikoff, S. (2000) Targeted screening for induced mutations. Nat. Biotechnol. 18, 455–457.CrossRefPubMedGoogle Scholar
  25. 25.
    May, S. T., Clements, D., and Bennett, M. J. (2002) Finding your knockout: reverse genetics techniques for plants. Mol. Biotechnol. 20, 209–221.CrossRefPubMedGoogle Scholar
  26. 26.
    Jander, G., Norris, S. R., Rounsley, S. D., Bush, D. F., Levin, I. M., and Last, R. L. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129, 440–450.CrossRefPubMedGoogle Scholar
  27. 27.
    Lukowitz, W., Gillmor, C. S., and Scheible WR. (2000) Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol. 123, 795–805.CrossRefPubMedGoogle Scholar
  28. 28.
    Yano, M. (2001) Genetic and molecular dissection of naturally occurring variation. Curr. Opin. Plant Biol. 4, 130–135.CrossRefPubMedGoogle Scholar
  29. 29.
    Maloof, J. N. (2003) Genomic approaches to analyzing natural variation in Arabidopsis thaliana. Curr. Opin. Genet. Dev. 13, 576–582.CrossRefPubMedGoogle Scholar
  30. 30.
    Neff, M. M., Turk, E., and Kalishman, M. (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet. 18, 613–615.CrossRefPubMedGoogle Scholar
  31. 31.
    Cho, R. J., Mindrinos, M., Richards, D. R., et al. (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat. Genet. 23, 203–207.CrossRefPubMedGoogle Scholar
  32. 32.
    Schmid, K. J., Sorensen, T. R., Stracke, R., Torjek, O., Altmann, T., Mitchell-Olds, T., and Weisshaar, B. (2003) Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res. 13, 1250–1257.CrossRefPubMedGoogle Scholar
  33. 33.
    Torjek, O., Berger, D., Meyer, R. C., et al. (2003) Establishment of a high-efficiency SNP-based framework marker set for Arabidopsis. Plant J. 36, 122–140.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Margarita Garcia-Hernández
    • 1
  • Leonore Reiser
    • 1
  1. 1.Carnegie Institution Department of Plant BiologyStanford

Personalised recommendations