Hepatocyte Cultures in Drug Metabolism and Toxicological Research and Testing

  • Tamara Vanhaecke
  • Vera Rogiers
Part of the Methods in Molecular Biology book series (MIMB, volume 320)


When a new chemical entity is tested for its safety for humans and their environment, in vivo experiments on living animals are usually conducted. However, in the early preclinical stage of drug development, in vitro techniques, and more specifically hepatocyte-based in vitro models, are currently being applied. A major problem, however, related to the use of hepatocytes and their cultures is their limited viability, which is associated with the loss of phase I and phase II biotransformation capacity. Therefore, in order to keep the hepatocytes functional for a longer period, the in vivo microenvironment is mimicked in vitro as closely as possible through the addition of soluble medium components, coculture with helper cells, or culture on an extracellular matrix (sandwich culture). We discuss the advantages and disadvantages of current short- and long-term hepatocyte culture systems are discussed as well as their proper use in toxicological research and testing.

Key Words

Short-term primary hepatocyte cultures long-term primary hepatocyte cultures metabolic competence toxicity testing 



This work was supported by grants from the Fund of Scientific Research Flanders (FWO), Belgium; the Research Council of the Vrije Universiteit Brussel, Belgium; and the EU 6th Framework Program (project number 504761).


  1. 1.
    Rogiers, V., Blaauboer, B., Maurel, P., Phillips, I., and Shephard, E. (1995) Hepatocyte-based in vitro models and their application in pharmaco-toxicology. Toxicol. In Vitro 9, 685–694.PubMedCrossRefGoogle Scholar
  2. 2.
    Gómez-Lechón, M. J., Donato, T., Ponsoda, X., and Castell J. V. (2003) Human hepatic cell cultures: in vitro and in vivo drug metabolism. ATLA 31, 257–265.PubMedGoogle Scholar
  3. 3.
    Brandon, E. F. A., Raap, C. D., Meijerman, I., Beijnen, J. H., and Schellens, J. H. M. (2003) An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol. Appl. Pharmacol. 189, 233–246.PubMedCrossRefGoogle Scholar
  4. 4.
    Anonymous. (1994) Animal experimentation in Canada and in the Netherlands. ATLA 22, 310–313.Google Scholar
  5. 5.
    Gibson, C. G. and Skett, P. (eds.) (1994) Introduction to Drug Metabolism, 2nd ed. Chapman and Hall, London, UK.Google Scholar
  6. 6.
    Papeleu, P., Elaut, G., Rogiers, V., and Vanhaecke, T. (2002) Cell cultures as in vitro tools for biotransformation studies, in Recent Research Developments in Drug Metabolism and Disposition (Pandalai, P., ed.), Transworld Research Network, Kerala, India, pp. 199–234.Google Scholar
  7. 7.
    Paine, A. and Andreakos, E. (2004) Activation of signaling pathways during hepatoycte isolation: relevance to toxicology in vitro. Toxicol. In Vitro 18, 187–193.PubMedCrossRefGoogle Scholar
  8. 8.
    Nussler, A. K., Wang, A., Neuhaus, P., et al. (2001) The suitability of hepatocyte culture models to study various aspects of drug metabolism. ALTEX 18, 91–101.PubMedGoogle Scholar
  9. 9.
    Blaauboer, B. J., Boobis, A. R., Castell, J. V., et al. (1994) The practical applicability of hepatocyte cultures in routine testing. ATLA 22, 231–241.Google Scholar
  10. 10.
    Elaut, G., Papeleu, P., Rogiers, V., and Vanhaecke, T. (2002) Practical aspects of in vitro biotransformation studies during early drug development, in Recent Research Developments in Drug Metabolism and Disposition (Pandalai, P., ed.), Transworld Research Network, Kerala, India, pp. 167–198.Google Scholar
  11. 11.
    Guillouzo, A., Morel, F., Ratanasavanh, D., Chesné, C., and Guguen-Guillouzo, C. (1990) Long-term culture of functional hepatocytes. Toxicol. In Vitro 4, 415–427.PubMedCrossRefGoogle Scholar
  12. 12.
    Rogiers, V. and Vercruysse, A. (1993) Rat hepatocyte cultures and co-cultures in biotransformation studies of xenobiotics. Toxicology 82, 193–208.PubMedCrossRefGoogle Scholar
  13. 13.
    Rogiers, V. (1993) Cultures of human hepatocytes in in vitro pharmaco-toxicology, in Human Cells in In Vitro Pharmaco-Toxicology (Rogiers, V., Sonck, W., Shephard, E., and Vercruysse, A., eds.), VUB Press, Brussels, Belgium, pp. 77–115.Google Scholar
  14. 14.
    George, E., Hamilton, G., and Westmoreland, C. (1996) The use of in vitro models in hepatotoxicity testing. TEN 3, 142–152.Google Scholar
  15. 15.
    LeCluyse, E. L., Bullock, P. L., and Parkinson, A. (1996) Strategies for restoration and maintenance of normal hepatic structure and function in long-term cultures of rat hepatocytes. Adv. Drug Deliv. Rev. 22, 133–186.CrossRefGoogle Scholar
  16. 16.
    Papeleu, P., Loyer, P., Vanhaecke, T., et al. (2003) Trichostatin A induces differential cell cycle arrests but does not induce apoptosis in primary cultures of mitogen-stimulated rat hepatocytes. J. Hepatol. 39, 374–382.PubMedCrossRefGoogle Scholar
  17. 17.
    Vanhaecke, T., Papeleu, P., Elaut, G., and Rogiers, V. (2004) Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view. Curr. Med. Chem. 11, 1629–1643.PubMedCrossRefGoogle Scholar
  18. 18.
    Guillouzo, A. (1986) Use of cultured hepatocytes for xenobiotic metabolism and cytotoxicity studies, in Isolated and Cultured Hepatocytes (Guillouzo, A. and Guguen-Guillouzo, C., eds.), Les Editions Inserm, John Libbey-Eurotext, Paris, pp. 313–332.Google Scholar
  19. 19.
    Coecke, S., Rogiers V., Bayliss, M., et al. (1999) an ECVAM prevalidation proposal for the use of long-term hepatocyte cultures for drug metabolism enzyme induction. ATLA 27, 579–615.PubMedGoogle Scholar
  20. 20.
    Rogiers, V., Vandenberghe, Y. Callaerts, A., et al. (1990) Phase I and phase II xenobiotic biotransformation in cultures and co-cultures of adult rat hepatocytes. Biochem. Pharmacol. 40, 1701–1706.PubMedCrossRefGoogle Scholar
  21. 21.
    Akrawi, M., Rogiers, V., Vandenberghe, Y., et al. (1993) Maintenance and induction in co-cultured rat hepatocytes of components of the cytochrome P-450 mediated monooxygenase. Biochem. Pharmacol. 45, 1583–1591.PubMedCrossRefGoogle Scholar
  22. 22.
    Akrawi, M., Shephard, E. A., Phillips, I. R., Vercruysse, A., and Rogiers, V. (1993) Effects of phenobarbital and valproate on the expression of cytochrome P-450 in co-cultured rat hepatocytes. Toxicol. In Vitro 7, 477–480.PubMedCrossRefGoogle Scholar
  23. 23.
    Vandenberghe, Y., Glaise, D., Meyer, D., Guillouzo, A., and Ketterer, B. (1988) Glutathione transferase isoenzymes in cultured rat hepatocytes. Biochem. Pharmacol. 37, 2482–2485.PubMedCrossRefGoogle Scholar
  24. 24.
    Vandenberghe, Y., Ratanasavanh, D., Glaise, D., and Guillouzo, A. (1988) Influence of medium composition and culture conditions on glutathione S-transferase activity in adult rat hepatocytes during culture. In Vitro Cell. Dev. Biol. 24, 281–288.PubMedCrossRefGoogle Scholar
  25. 25.
    Vandenberghe, Y., Morel, F., Foriers, A., et al. (1989) Effect of phenobarbital on the expression of glutatione S-transferase isoenzymes in cultured rat hepatocytes. FEBS Lett. 251, 59–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Vandenberghe, Y., Morel, F., Pemble, S., et al. (1990) Changes in expression of mRNA coding for glutathione S-transferase subunits 1–2 and 7 in cultured rat hepatocytes. Mol. Pharmacol. 37, 372–376.PubMedGoogle Scholar
  27. 27.
    Viollon-Abadie, C., Lasserre, D. B., Nicod, L., Carmichael, N., and Richert, L. (2000) Effects of model inducers on thyroxine UDP-glucuronosyl-transferase activity in vitro in rat and mouse hepatocyte cultures. Toxicol. In Vitro 14, 505–512.PubMedCrossRefGoogle Scholar
  28. 28.
    Coecke, S., Mertens, K., Segaert, A., Callaerts, A., Vercruysse, A., and Rogiers, V. (1992) Spectrophotometric measurement of flavin-containing monooxygenase activity in freshly isolated rat hepatocytes and their cultures. Anal. Biochem. 205, 285–288.PubMedCrossRefGoogle Scholar
  29. 29.
    Vanhaecke, T., Henkens, T., Kass, G., and Rogiers, V. (2004) Effect of the histone deacetylase inhibitor Trichostatin A on spontaneous apoptosis in various types of adult rat hepatocyte cultures. Biochem. Pharmacol. 68, 753–760.PubMedCrossRefGoogle Scholar
  30. 30.
    Gebhardt, R., Fitzke, H., Fausel, M., Eisenmann-Tappe, I., and Mecke, D. (1990) Influence of hormones and drugs on glutathione S-transferase levels in primary culture of adult rat hepatocytes. Cell Biol. Toxicol. 6, 365–378.PubMedCrossRefGoogle Scholar
  31. 31.
    Vanhaecke, T., Foriers, A., Geerts, A., Shephard, E. A., Vercruysse, A., and Rogiers, V. (2001) Pyruvate-induced long-term maintenance of glutathione S-transferase in rat hepatocyte cultures. ATLA 29, 335–346.PubMedGoogle Scholar
  32. 32.
    Yanagi, K. and Ohsima, N. (2001) Improvement of metabolic performance of cultured hepatocytes by high oxygen tension in the atmosphere. Artif. Organs 25, 1–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Vanhaecke, T., Lindros, K. O., Oinonen, T., Vercruysse, A., and Rogiers, V. (2001) Triiodothyronine downregulates the periportal expression of α class glutathione S-transferase in rat liver. FEBS Lett. 487, 356–360.PubMedCrossRefGoogle Scholar
  34. 34.
    Begué, J., Guguen-Guillouzo, C., Pasdeloup, N., and Guillouzo, A. (1984) Prolonged maintenance of active cytochrome P-450 in adult rat hepatocytes co-cultured with another liver cell type. Hepatology 4, 839–842.PubMedCrossRefGoogle Scholar
  35. 35.
    Guguen-Guillouzo, C., Clément, B., Lescoat, G., Glaise, D., and Guillouzo, A. (1984) Modulation of human fetal hepatocyte survival and differentiation by interactions with a rat liver epithelial cell line. Dev. Biol. 105, 211–220.PubMedCrossRefGoogle Scholar
  36. 36.
    Clément, B., Guguen-Guillouzo, C., Campion, J. P., Glaise, D., Bourel, M., and Guillouzo, A. (1984) Long-term co-cultures of adult human hepatocytes with rat liver epithelial cells: modulation of active albumin secretion and accumulation of extracellular material. Hepatology 3, 373–380.CrossRefGoogle Scholar
  37. 37.
    Lescoat, G., Thézé, N., Clément, B., Guillouzo, A., and Guguen-Guillouzo, C. (1985) Control of albumin and a fetoprotein secretion by fetal and neonatal rat hepatocytes maintained in co-culture. Cell Diff. 16, 259–268.CrossRefGoogle Scholar
  38. 38.
    Niemann, C., Gauthier, J. C., Richert, L., Ivanov, M. A., Melcion, C., and Cordier, A. (1991) Rat adult hepatocytes in primary pure and mixed monolayer culture. Biochem. Pharmacol. 42, 373–379.PubMedCrossRefGoogle Scholar
  39. 39.
    Utesch, D. and Oesch, F. (1992) Dependency of the in vitro stabilization of differentiated functions in parenchymal cells on the type of cell line used for co-culture. In Vitro Cell. Dev. Biol. 28A, 193–198.PubMedCrossRefGoogle Scholar
  40. 40.
    Vons, C., Pegorier, J. P., Girard, J., Kohl, C., Ivanov, M. A., and Franco, D. (1991) Regulation of fatty-acid metabolism by pancreatic hormones in cultured human hepatocytes. Hepatology 13, 1126–1130.PubMedCrossRefGoogle Scholar
  41. 41.
    Maier, P. (1988) Development of in vitro toxicity tests with cultures of freshly isolated rat hepatocytes. Experientia 44, 807–817.PubMedCrossRefGoogle Scholar
  42. 42.
    Coecke, S., Vanhaecke, T., Foriers, A., et al. (2000) Hormonal regulation of glutathione S-transferase expression in co-cultured adult rat hepatocytes. J. Endocrinol. 166, 363–371.PubMedCrossRefGoogle Scholar
  43. 43.
    Vanhaecke, T., Derde, M. P., Vercruysse, A., and Rogiers, V. (2001) Hydroxypropylbeta-cyclodextrin as delivery system for thyroid hormones, regulating glutathione S-transferase expression in hepatocyte co-cultures. Biochem. Pharmacol. 61, 1073–1078.PubMedCrossRefGoogle Scholar
  44. 44.
    Coecke, S., Debast, G., Phillips, I. R., Vercruysse, A., Shephard, E. A., and Rogiers, V. (1998) Hormonal regulation of microsomal flavin-containing monooxygenase activity by sex steroids and growth hormone in co-cultured adult male rat hepatocytes. Biochem. Pharmacol. 56, 1047–1051.PubMedCrossRefGoogle Scholar
  45. 45.
    Rogiers, V., Callaerts, A., Vercruysse, A., Akrawi, M., Shephard, E., and Phillips, I. (1992) Effects of valproate in xenobiotic biotransformation in rat livers: in vivo and in vitro experiments. Pharm. Weekbl. Sci. 14, 127–131.PubMedCrossRefGoogle Scholar
  46. 46.
    Rogiers, V., Akrawi, M., Vercruysse, A., Phillips, I. R., and Shephard, E. A. (1995) Effects of the anticonvulsant, valproate, on the expression of components of cytochrome-P-450-mediated monooxygenase system and glutathione S-transferases. Eur. J. Biochem. 231, 337–343.PubMedCrossRefGoogle Scholar
  47. 47.
    Clément, B., Guguen-Guillouzo, C., Grimaud, J. A., Rissel, M., and Guillouzo, A. (1988) Effect of hydrocortisone on deposition of types I and IV collagen in cultured rat hepatocytes. Cell. Mol. Biol. 34, 449–460.PubMedGoogle Scholar
  48. 48.
    Clément, B., Resean, P. Y., Baffet, G., et al. (1988) Hepatocytes may produce laminin in fibrotic liver and primary culture. Hepatology 8, 794–803.PubMedCrossRefGoogle Scholar
  49. 49.
    Fraslin, J. M., Kneip, B., Vaulont, S., Glaise, D., Munnich, A., and Guguen-Guillouzo, C. (1985) Dependence of hepatocyte specific gene expression on cell-cell interactions in primary culture. EMBO J. 4, 2487–2491.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Mesnil, M., Fraslin, J. M., Piccoli, C., Yamasaki, H., and Guguen-Guillouzo, C. (1987) Cell contact but not junctional communication (dye coupling) with biliary epithelial cells is required for hepatocytes to maintain differentiated functions. Exp. Cell Res. 173, 524–533.PubMedCrossRefGoogle Scholar
  51. 51.
    Diener, B., Beer, N., Dürk, H., et al. (1994) Gap junctional intercellular communication of cultured rat liver parenchymal cells is stabilized by epithelial cells and their isolated plasma membranes. Experientia 50, 121–126.CrossRefGoogle Scholar
  52. 52.
    Corlu, A., Kneip, B., Lhadi, C., et al. (1991) A plasma membrane protein involved in cell contact-mediated regulation of tissue specific genes in adult hepatocytes. J. Cell Biol. 115, 505–515.PubMedCrossRefGoogle Scholar
  53. 53.
    Corlu, A., Ilyin, G., Cariou, S., Lamy, I., Loyer, P., and Guguen-Guillouzo, C. (1997) The coculture: a system for studying the regulation of liver differentiation/proliferation activity and its control. Cell Biol. Toxicol. 13, 235–242.PubMedCrossRefGoogle Scholar
  54. 54.
    Mertens, K., Rogiers, V., and Vercruysse, A. (1993) Glutathione dependent detoxication in adult rat hepatocytes under various culture conditions. Arch. Toxicol. 67, 680–685.PubMedCrossRefGoogle Scholar
  55. 55.
    Mertens, K., Rogiers, V., and Vercruysse, A. (1993) Measurement of malondialdehyde in cultures of adult rat hepatocytes. Toxicol. In Vitro 7, S439–S441.CrossRefGoogle Scholar
  56. 56.
    Mertens, K., Kaufman, S., Waterschoot, S., Vercruysse, A., and Rogiers, V. (1996) Effect of tertiary butylhydroperoxide-induced oxidative stress on glutathione content and thiobarbituric acid reactive substances production in cultures and co-cultures of adult rat hepatocytes. Toxicol. In Vitro 10, 507–511.PubMedCrossRefGoogle Scholar
  57. 57.
    Gebhardt, R., Hengstler, J. G., Muller, D., et al. (2003) New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures. Drug Metab. Rev. 35, 145–213.PubMedCrossRefGoogle Scholar
  58. 58.
    Gebhardt, R., Wegner, H., and Alber, J. (1996) Perifusion of co-cultured hepatocytes: optimization of studies on drug metabolism and cytotoxicity in vitro. Cell Biol. Toxicol. 12, 57–68.PubMedCrossRefGoogle Scholar
  59. 59.
    Dunn, J. C. Y., Yarmush, M. L., Koebe, H. G., and Tompkins, R. G. (1989) Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J. 3, 174–177.PubMedGoogle Scholar
  60. 60.
    Dunn, J. C. Y., Tompkins, R. G., and Yarmush, M. L. (1991) Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol. Prog. 7, 237–245.PubMedCrossRefGoogle Scholar
  61. 61.
    Dunn, J. C. Y., Tompkins, R. G., and Yarmush, M. L. (1992) Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J. Cell Biol. 116, 1043–1053.PubMedCrossRefGoogle Scholar
  62. 62.
    Moghe, P. V., Berthiaume, F., Ezzell, R. M., Toner, M., Tompkins, R. G., and Yarmush, M. L. (1996) Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function. Biomaterials 17, 373–385.PubMedCrossRefGoogle Scholar
  63. 63.
    Koebe, H. G., Pahernik, S., Eyer, P., and Schildberg, F. W. (1994) Collagen gel immobilization: a useful cell culture technique for long-term metabolism studies on human hepatocytes. Xenobiotica 24, 95–107.PubMedCrossRefGoogle Scholar
  64. 64.
    Yarmush, M. L., Toner, M., Dunn, J., Rotem, A., Hubel, A., and Tompkins, R. G. (1992) Hepatic tissue engineering: development of critical technologies. Ann. NY Acad. Sci. 665, 238–252.PubMedCrossRefGoogle Scholar
  65. 65.
    Knop, E., Bader, A., Böker, K., Pichlmayr, R., and Sewing, K. F. (1995) Ultrastructural and functional differentiation of hepatocytes under long-term culture conditions. Anat. Rec. 242, 337–349.PubMedCrossRefGoogle Scholar
  66. 66.
    LeCluyse, E., Audus, K. L., and Hochman, J. H. (1994) Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am. J. Physiol. 266, C1764–C1774.Google Scholar
  67. 67.
    LeCluyse, E. (2001) Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur. J. Pharm. Sci. 13, 343–368.CrossRefGoogle Scholar
  68. 68.
    Ezzell, R. M., Toner, M., Hendricks, K., Dunn, J. C. Y., Tompkins, R. G., and Yarmush, M. L. (1993) Effect of collagen gel configuration on the cytoskeleton in cultured rat hepatocytes. Exp. Cell Res. 208, 442–452.PubMedCrossRefGoogle Scholar
  69. 69.
    Berthiaume, F., Moghe, P. V., Toner, M., and Yarmush, M. L. (1996) Effect of extracellular matrix topology on cell structure, function and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J. 10, 1471–1484.PubMedGoogle Scholar
  70. 70.
    Wang, Y. J., Liu, H. L., Guo, H. T., Wen, H. W., and Liu, J. (2004) Primary hepatocyte culture in collagen gel mixture and collagen sandwich. World J. Gastroenterol. 10, 699–702.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lee, J., Morgan, J. R., Tompkins, R. G., and Yarmush, M. L. (1993) Proline-mediated enhancement of hepatocyte function in a collagen gel sandwich culture configuration. FASEB J. 7, 586–591.PubMedGoogle Scholar
  72. 72.
    De Smet, K., Loyer, P., Gilot, D., Guguen-Guillouzo, C., Vercruysse, A., and Rogiers, V. (2001) Effects of epidermal growth factor on CYP inducibility by xenobiotics, DNA replication, and caspase activations in collagen I gel sandwich cultures of rat hepatocytes. Biochem. Pharmacol. 61, 1293–1303.PubMedCrossRefGoogle Scholar
  73. 73.
    Bader, A., Zech, K., Crome, O., Christians, U., Pichlmayr, R., and Sewing, K. F. (1994) Use of organotypical cultures of primary hepatocytes to analyse drug biotransformation in man and animals. Xenobiotica 24, 623–633.PubMedCrossRefGoogle Scholar
  74. 74.
    Bader, A., Knop, E., Böker, K. H. W., et al. (1996) Tacrolimus (FK506) biotransformation in primary rat hepatocytes depends on extracellular matrix geometry. Naunyn-Schmiedeberg’s Arch. Pharmacol. 353, 461–473.Google Scholar
  75. 75.
    Rotem, A., Matthew, H. W. T., Hsiao, P. H., Toner, M., Tompkins, R. G., and Yarmush, M. L. (1995) The activity of cytochrome P450 1A1 in stable cultured rat hepatocytes. Toxicol. In Vitro 9, 139–149.PubMedCrossRefGoogle Scholar
  76. 76.
    De Smet, K., Callaerts, A., Vercruysse, A., and Rogiers, V. (1997) Effect of Phenobarbital on 7-ethoxycoumarin O-deethylase and microsomal epoxide hydrase activities in collagen gel cultures of rat hepatocytes. Toxicol. In Vitro 11, 459–463.PubMedCrossRefGoogle Scholar
  77. 77.
    De Smet, K., Cavin, C., Vercruysse, A., and Rogiers, V. (2001) Collagen type I gel cultures of adult rat hepatocytes as a screening induction model for cytochrome P450-dependent enzymes ATLA 29, 179–192.PubMedGoogle Scholar
  78. 78.
    Gómez-Lechón, M. J., Jover, R., Donato, T., et al. (1998) Long-term expression of differentiated functions in hepatocytes cultured in a three-dimensional collagen matrix. J. Cell. Physiol. 177, 553–562.PubMedCrossRefGoogle Scholar
  79. 79.
    Kern, A., Bader, A., Pichlmayer, R., and Sewing, K. (1997) Drug metabolism in hepatocyte sandwich cultures of rats and humans. Biochem. Pharmacol. 54, 761–772.PubMedCrossRefGoogle Scholar
  80. 80.
    Kono, Y., Yang, S., and Roberts, E. (1997) Extended primary culture of human hepatocytes in a collagen gel sandwich system. In Vitro Cell. Dev. Biol.-Anim. 33, 467–472.PubMedCrossRefGoogle Scholar
  81. 81.
    Beken, S., Pauwels, M., Pahernik, S., Koebe, H. G., Vercruysse, A., and Rogiers, V. (1997) Glutathione S-transferase activity in collagen gel sandwich and immobilization cultures of rat hepatocytes. Toxicol. In Vitro 11, 741–752.PubMedCrossRefGoogle Scholar
  82. 82.
    Richert, L., Binda, D., Hamilton, G., et al. (2002) Evaluation of the effect of culture configuration on morphology, survival time, antioxidant status and metabolic capacities of cultured rat hepatocytes. Toxicol. In Vitro 16, 89–99.PubMedCrossRefGoogle Scholar
  83. 83.
    Beken, S., Pahernik, S., Koebe, H. G., Vercruysse, A., and Rogiers, V. (1997) Cell morphology, albumin secretion and glutathione S-transferase expression in collagen gel sandwich and immobilisation cultures of rat hepatocytes. Toxicol. In Vitro 11, 409–416.PubMedCrossRefGoogle Scholar
  84. 84.
    Beken, S., Depreter, M., Roels, F., Shephard, E. A., Phillips, I. R., Vercruysse, A., and Rogiers, V. (2005) The applicability of collagen gel cultures of rat hepatocytes as screening tools for potential chemopreventive agents. ATLA, in press.Google Scholar
  85. 85.
    Liu, L., LeCluyse, E., and Klaassen, C. D. (1996) Sulfotransferase gene expression in primary cultures of rat hepatocytes. Biochem. Pharmacol. 52, 1621–1630.PubMedCrossRefGoogle Scholar
  86. 86.
    Slaus, K., Coughtrie, M. W. H., Sharp, S., Vanhaecke, T., Vercruysse A., and Rogiers, V. (2001) Influence of culture system and medium enrichment on sulfotransferase and sulfatase expression in male rat hepatocyte cultures. Biochem. Pharmacol. 61, 1107–1117.PubMedCrossRefGoogle Scholar
  87. 87.
    Pahernik, S. A., Schmid, J., Sauter, T., Schildberg, F. W., and Koebe, H. G. (1995) Metabolism of pimobendan in long-term human hepatocyte culture: in vivo-in vitro comparison. Xenobiotica 25, 811–823.PubMedCrossRefGoogle Scholar
  88. 88.
    Li, A. P., Colburn, S. M., and Beck, D. J. (1992) A simplified method for the culturing of primary adult rat and human hepatocytes as multicellular spheroids. In Vitro Cell. Dev. Biol. 28A, 673–677.PubMedCrossRefGoogle Scholar
  89. 89.
    Landry, J., Bernier, D., Quellet, C., Goyette, R., and Marceau, N. (1985) Spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities. J. Cell Biol. 101, 914–923.PubMedCrossRefGoogle Scholar
  90. 90.
    Koide, N., Sakaguchi, K., Koide, Y., et al. (1990) Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Exp. Cell Res. 186, 227–235.PubMedCrossRefGoogle Scholar
  91. 91.
    Ueno, K, Miyashita, A., Endoh, K, Takezawa, T., Yamazaki, M., Mori, Y., and Satoh, T. (1992) Formation of multicellular spheroids composed of rat hepatocytes. Res. Comm. Chem. Pathol. Pharmacol. 77, 107–120.Google Scholar
  92. 92.
    Hamilton, G., Fox, R., Atterwill, C. K., and Gedorge, E. (1995) Liver spheroids as a long term model for liver toxicity in vitro. Hum. Exp. Toxicol. 15, 153.Google Scholar
  93. 93.
    Tong, J. Z., Bernard, O., and Alvarez, F. (1990) Long-term culture of rat liver spheroids in hormonally defined media. Exp. Cell Res. 189, 87–92.PubMedCrossRefGoogle Scholar
  94. 94.
    Tong, J. Z., De Lagausie, P., Furlan, V., Cresteil, T., Bernard, O., and Alvarez, F. (1992) Long-term culture of adult rat hepatocyte spheroids. Exp. Cell Res. 200, 326–232.PubMedCrossRefGoogle Scholar
  95. 95.
    Amman, P. and Maier, P. (1997) Preservation and inducibility of xenobiotic metabolism in long-term cultures of adult rat liver cell aggregates. Toxicol. In Vitro 11, 43–56.CrossRefGoogle Scholar
  96. 96.
    Wu, F. J., Friend, J. R., Remmel, R. P., Cerra, F. B., and Hu, W.-S. (1999) Enhanced cytochrome P450 IA1 activity of self-assembled rat hepatocyte spheroids. Cell Transplant. 8, 233–246.PubMedGoogle Scholar
  97. 97.
    Niwa, T., Koide, N., Tsuji, T., et al. (1996) Cytochrome P450s of isolated rat hepatocytes in spheroid and monolayer cultures. Res. Commun. Mol. Pathol. 91, 372–378.Google Scholar
  98. 98.
    Juillerat, M., Marceau, N., Coeyteaux, S., Sierra, F., Kolodziejczyck, E., and Guigoz, Y. (1997) Expression of organ-specific structures and functions in long-term cultures of aggregates from adult rat liver cells. Toxicol. In Vitro 11, 57–69.PubMedCrossRefGoogle Scholar
  99. 99.
    Nemoto, N., Sakurai, J., and Funae, Y. (1995) Maintenance of phenobarbital-inducible Cyp2b gene expression in C57BL/6 mouse hepatocytes in primary culture as spheroids. Arch. Biochem. Biophys. 316, 362–369.PubMedCrossRefGoogle Scholar
  100. 100.
    Roberts, R. and Soames, A. R. (1993) Hepatocyte spheroids: prolonged hepatocyte viability for in vitro modeling of nongenotoxic carcinogenesis. Fundam. Appl. Toxicol. 21, 149–158.PubMedCrossRefGoogle Scholar
  101. 101.
    Abramovitz, M., Ishigaki, S., and Listowsky, I. (1989) Differential regulation of glutathione S-transferases in cultured hepatocytes. Hepatology 9, 235–239.PubMedCrossRefGoogle Scholar
  102. 102.
    Menjo, M., Yamaguchi, S., Murata, Y., et al. (1999) Responsiveness to thyroid hormone is enhanced in rat hepatocytes cultured as spheroids compared with that in monolayers: altered responsiveness to thyroid hormone possibly involves complex formed on thyroid hormone response elements. Thyroid 9, 959–967.PubMedCrossRefGoogle Scholar
  103. 103.
    Walker, T., Rhodes, P. C., and Westmoreland, C. (2000) The differential cytotoxicity of methotrexate in rat hepatocyte monolayer and spheroid cultures. Toxicol. In Vitro 14, 475–485.PubMedCrossRefGoogle Scholar
  104. 104.
    Ratanasavanh, D., Beaune, P., Baffet, G., et al. (1986) Immunochemical evidence for the maintenance of cytochrome P-450 isozymes, NADPH cytochrome C reductase, and epoxide hydrolase in pure and mixed primary cultures of adult human hepatocytes. J. Histochem. Cytochem. 34, 527–533.PubMedCrossRefGoogle Scholar
  105. 105.
    Guillouzo, A. (1992) Hepatotoxicity, in In Vitro Toxicity Testing (Frazier, J. M., ed.), Marcel Dekker, New York, pp. 45–83.Google Scholar
  106. 106.
    Goethals, F., Krack, G., Deboyser, D., Vossen, P., and Roberfroid, M. (1984) Critical biochemical functions of isolated hepatocytes as sensitive indicators of chemical toxicity. Fundam. Appl. Toxicol. 4, 441–450.PubMedCrossRefGoogle Scholar
  107. 107.
    Rogiers, V., Vandenberghe, Y., and Vercruysse A. (1985) Inhibition of gluconeogenesis by sodium valproate and its metabolites in isolated rat hepatocytes. Xenobiotica 15, 759–765.PubMedCrossRefGoogle Scholar
  108. 108.
    Rogiers, V., Vandenberghe, Y., Vanhaecke, T., et al. (1996) Observation of hepatotoxic effects of 2-n-pentylamino-acetamide (Milacemide) in rat liver: a combined in vivo/in vitro approach. Arch. Toxicol. 71, 271–282.CrossRefGoogle Scholar
  109. 109.
    Vinken, M., Vanhaecke, T., and Rogiers, V. (2003) De integratie van “omics” in de geneesmiddelenontwikkeling van de 21ste eeuw. Farm. Tijdschr. België 2, 11–18.Google Scholar
  110. 110.
    Butterworth, B. E., Smith-Oliver, T., Earle, L., et al. (1989) Use of primary cultures of human hepatocytes in toxicology studies. Cancer Res. 49, 1075–1084.PubMedGoogle Scholar
  111. 111.
    Swierenga, S. H. H., Bradlaw, J. A., Brillinger, R. L., Gilman, J. P. W., Nestmann, E. R., and San, R. C. (1991) Recommended protocols based on a survey of current practice in genotoxicity testing laboratories. I. Unscheduled DNA synthesis assay in rat hepatocyte cultures. Mutat. Res. 246, 235–253.PubMedCrossRefGoogle Scholar
  112. 112.
    Williams, G. M., Ross, P. M., Jeffrey, A. M., and Karlsson, S. (1998) Genotoxicity studies with the antiestrogen toremifene. Drug Chem. Toxicol. 21, 449–476.PubMedCrossRefGoogle Scholar
  113. 113.
    Le Curieux, F., Nesslany, F., Munter, T., Krinberg, L., and Marzin, D. (1999) Genotoxic activity of chlorohydroxyfuranones in the microscale micronucleus test on mouse lymphoma cells and the unscheduled DNA synthesis assay in rat hepatocytes. Mutagenesis 14, 457–462.PubMedCrossRefGoogle Scholar
  114. 114.
    Muller-Tegethoff, K., Kersten, B., Kasper, P., and Muller, L. (1997) Application of the in vitro rat hepatocyte micronucleus assay in genetic toxicology testing. Mutat. Res. 392, 125–138.PubMedCrossRefGoogle Scholar
  115. 115.
    Butterworth, B. E., Earle, L. L., Strom, S., Jirtle, R., and Michalopoulos, G. (1983) Induction of DNA repair in human and rat hepatocytes by 1,6-dinitropyrene. Mutat. Res. 122, 73–80.PubMedCrossRefGoogle Scholar
  116. 116.
    Strom, S. C., Jirtle, R. L., and Michalopoulos, G. (1983) Genotoxic effects of 2-acetylaminofluorene on rat and human hepatocytes. Environ. Health Perspect. 49, 165–170.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Martelli, A., Robbiano, L., Giuliano, L., Pino, A., Angelini, G., and Brambilla, G. (1985) DNA fragmentation by N-nitrosodimethylamine and methylmethanesulfonate in human hepatocyte primary cultures. Mutat. Res. 144, 209–211.PubMedCrossRefGoogle Scholar
  118. 118.
    Martelli, A., Allavena, A., Robbiano, L., Mattioli, F., and Brambilla, G. (1990) Comparison of the sensitivity of human and rat hepatocytes to the genotoxic effects of metronidazole. Pharmacol. Toxicol. 66, 329–334.PubMedCrossRefGoogle Scholar
  119. 119.
    Martelli, A., Mattioli, F., Angiola, M., Reimann, R., and Brambilla, G. (2003) Species, sex and interindividual differences in DNA repair induced by nine sex steroids in primary cultures of rat and human hepatocytes. Mutat. Res. 536, 69–78.PubMedCrossRefGoogle Scholar
  120. 120.
    Monteith, D. K. and Gupta, R. C. (1992) Carcinogen-DNA adducts in cultures of rat and human hepatocytes. Cancer Lett. 62, 87–93.PubMedCrossRefGoogle Scholar
  121. 121.
    Guillouzo, A. (1995) Hépatotoxicité in vitro, in Toxicologie cellulaire in vitro: Méthodes et applications (Adolphe, M., Guillouzo, A., and Marano, F., eds.), Les Editions Inserm, Paris, pp. 69–120.Google Scholar
  122. 122.
    Jover, R., Ponsoda, X., Gomez-Lechon, M. L., and Castell, J. V. (1992) Potentiation of heroin and methadone hepatotoxicity by ethanol: an in vitro study using cultured human hepatocytes. Xenobiotica 22, 471–478.PubMedCrossRefGoogle Scholar
  123. 123.
    Birge, R. B., Bartolone, J. B., Hart, S. G. E., et al. (1990) Acetominophen hepatotoxicity: correspondence of selective protein arylation in human and mouse liver in vitro, in culture and in vivo. Toxicol. Appl. Pharmacol. 105, 472–482.PubMedCrossRefGoogle Scholar
  124. 124.
    Tang, W., Stearns, R. A., Bandiera, S. M., et al. (1999) Studies on cytochrome P-450-mediated bioactivation of diclofenac in rats and in human hepatocytes: identification of glutathione conjugated metabolites. Drug Metab. Dispos. 27, 365–372.PubMedGoogle Scholar
  125. 125.
    Baillie, T. A. (1988) Metabolic activation of valproic acid and drug-mediated hepatotoxicity: role of the terminal olefin, 2-n-propyl-4-pentenoic acid. Chem. Res. Toxicol. 1, 195–199.PubMedCrossRefGoogle Scholar
  126. 126.
    Long, R. M. and Moore, L. (1988) Biochemical evaluation of rat hepatocyte primary cultures as a model for carbon tetrachloride hepatotoxicity: comparative studies in vivo and in vitro. Toxicol. Appl. Pharmacol. 92, 295–306.PubMedCrossRefGoogle Scholar
  127. 127.
    Harman, A. W., and Fischer, L. J. (1993) Hamster hepatocytes in culture as a model for acetaminophen toxicity studies with inhibitors of drug metabolism. Toxicol. Appl. Pharmacol. 71, 330–341.CrossRefGoogle Scholar
  128. 128.
    Skett, P. (1994) Problems in using isolated and cultured hepatocytes for xenobiotic metabolism/metabolism-based toxicity testing-solutions. Toxicol. In Vitro 8, 491–504.PubMedCrossRefGoogle Scholar
  129. 129.
    Skett, P. and Bayliss, M. (1996) Time for a consistent approach to preparing and culturing hepatocytes. Xenobiotica 26, 1–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Wrighton, S. A., Ring, B. J., and Vanden Branden, M. (1995) The use of in vitro metabolism techniques in the planning and interpretation of drug safety studies. Toxicol. Pathol. 23, 199–208.PubMedCrossRefGoogle Scholar
  131. 131.
    Yuan, J., Liu, L., Shimada, M., et al. (2004) Induction, expression and maintenance of cytochrome P450 isoforms in long-term cultures of primary human hepatoyctes. ALTEX 21, 3–11.PubMedGoogle Scholar
  132. 132.
    Vercruysse, A. (1993) Legislation and regulation on the use of cells from human origin in pharmaco-toxicology, in Human Cells in In Vitro Pharmaco-Toxicology (Rogiers, V., Sonck, W., Shephard, E., and Vercruysse, A., eds.), VUB Press, Brussels, Belgium, pp. 305–308.Google Scholar
  133. 133.
    Skett, P., Tyson, C., Guillouzo, A., and Maier, P. (1995) Report on the international workshop on the use of human in vitro liver preparations to study drug metabolism in drug development. Biochem. Pharmacol. 50, 280–285.PubMedCrossRefGoogle Scholar
  134. 134.
    David, P., Viollon, C., Alexandre, E., et al. (1998) Metabolic capacities in cultured human hepatocytes obtained by a new isolating procedure from non-wedge small liver biopsies. Hum. Exp. Toxicol. 17, 544–553.PubMedCrossRefGoogle Scholar
  135. 135.
    Hawskworth, G. M. (1994) Advantages and disadvantages of using human cells for pharmacological and toxicological studies. Hum. Exp. Toxicol. 13, 568–573.CrossRefGoogle Scholar
  136. 136.
    Li, A. P., Gorycki, P. D., Hengstler, J. G., et al. (1999) Present status of the application of cryopreserved hepatocytes in the evaluation of xenobiotics: consensus of an international expert panel. Chem. Biol. Interact. 121, 117–123.PubMedCrossRefGoogle Scholar
  137. 137.
    Hengstler, J. G., Utesh, D., Steinberg, P., et al. (2000) Cryopreserved primary hepatoyctes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug. Metab. Rev. 32, 81–118.PubMedCrossRefGoogle Scholar
  138. 138.
    Hengstler, J. G., Ringel, M., Biefang, K., et al. (2000) Cultures with cryopreserved hepatocytes: applicability for studies of enzyme induction. Chem. Biol. Interact. 125, 51–73.PubMedCrossRefGoogle Scholar
  139. 139.
    Scwartz, R. E., Reyes, M., Koodie, L., et al. (2002) Multipotent adult progenitor cells from bone marrow differntiate into functional hepatocyte-like cells. J. Clin. Invest. 109, 1291–1302.CrossRefGoogle Scholar
  140. 140.
    Verfaillie, C. M., Schwartz, R., Reyes, M., and Jiang, Y. (2003) Unexpected potential of adult stem cells. Ann. NY Acad. Sci. 996, 231–234.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Tamara Vanhaecke
    • 1
  • Vera Rogiers
    • 1
  1. 1.Department of ToxicologyVrije Universiteit BrusselBelgium

Personalised recommendations