Skip to main content

Polymerase Chain Reaction in Miniaturized Systems:

Big Progress in Little Devices

  • Protocol
Microfluidic Techniques

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 321))

Abstract

A critical need exists for advanced technologies that enable genomic-based DNA analysis to be performed with significantly higher throughput and at a significantly lower cost than is attainable with current hardware. Miniaturized polymerase chain reaction systems offer an attractive platform to address these needs, combining the ability to perform rapid thermocycling with a portable device format that can be inexpensively mass produced. We review recent efforts aimed at developing these next-generation systems and discuss some of the practical considerations involved in adapting this technology for routine laboratory use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins, F. S., Green, E. D., Guttmacher, A. E., and Guyer, M. S. (2003) A vision for the future of genomics research. Nature 422, 835–847.

    Article  PubMed  CAS  Google Scholar 

  2. Cantor, C. R. and Smith, C. L. (1999) Genomics: The Science and Technology Behind the Human Genome Project, Wiley Interscience, New York.

    Google Scholar 

  3. Wittwer, C. T., Fillmore, G. C., and Hillyard, D. R. (1989) Automated polymerase chain-reaction in capillary tubes with hot air. Nucleic Acids Res. 17, 4353–4357.

    Article  PubMed  CAS  Google Scholar 

  4. Wittwer, C. T., Fillmore, G. C., and Garling, D. J. (1990) Minimizing the time required for DNA amplification by efficient heat transfer to small samples. Anal. Biochem. 186, 328–331.

    Article  PubMed  CAS  Google Scholar 

  5. Swerdlow, H., Jones, B. J., and Wittwer, C. T. (1997) Fully automated DNA reaction and analysis in a fluidic capillary instrument. Anal. Chem. 69, 848–855.

    Article  PubMed  CAS  Google Scholar 

  6. Soper, S. A., Ford, S. M., Xu, Y. C., et al. (1999) Nanoliter-scale sample preparation methods directly coupled to polymethylmethacrylate-based microchips and gel-filled capillaries for the analysis of oligonucleotides. J. Chromatogr. A 853, 107–120.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, N. Y., Tan, H. D., and Yeung, E. S. (1999) Automated and integrated system for high-throughput DNA genotyping directly from blood. Anal. Chem. 71, 1138–1145.

    Article  PubMed  CAS  Google Scholar 

  8. Belgrader, P., Elkin, C. J., Brown, S. B., et al. (2003) A reusable flow-through polymerase chain reaction instrument for the continuous monitoring of infectious biological agents. Anal. Chem. 75, 3446–3450.

    Article  PubMed  Google Scholar 

  9. Friedman, N. A. and Meldrum, D. R. (1998) Capillary tube resistive thermocycling. Anal. Chem. 70, 2997–3002.

    Article  PubMed  CAS  Google Scholar 

  10. Huhmer, A. F. R. and Landers, J. P. (2000) Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes. Anal. Chem. 72, 5507–5512.

    Article  PubMed  CAS  Google Scholar 

  11. Burke, D. T., Burns, M. A., and Mastrangelo, C. (1997) Microfabrication technologies for integrated nucleic acid analysis. Genome Res. 7, 189–197.

    Article  PubMed  CAS  Google Scholar 

  12. Wilding, P. and Kricka, L. J. (1999) Micro-microchips: just how small can we go? Trends Biotechnol. 17, 465–468.

    Article  PubMed  CAS  Google Scholar 

  13. deMello, A. J. (2001) DNA amplification: does’ small’ really mean ‘efficient’? Lab Chip 1, 24N–29N.

    Article  Google Scholar 

  14. Schneegass, I. and Kohler, J. M. (2001) Flow-through polymerase chain reactions in chip thermocyclers. Rev. Mol. Biotechnol. 82, 101–121.

    Article  CAS  Google Scholar 

  15. Verpoorte, E. (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis 23, 677–712.

    Article  PubMed  CAS  Google Scholar 

  16. deMello, A. J. (2003) Microfluidics—DNA amplification moves on. Nature 422, 28–29.

    Article  PubMed  CAS  Google Scholar 

  17. Kricka, L. J. and Wilding, P. (2003) Microchip PCR. Anal. Bioanal. Chem. 377, 820–825.

    Article  PubMed  CAS  Google Scholar 

  18. Wilding, P. (2003) Nucleic acid amplification in microchips, in Biochip Technology (Cheng, J. and Kricka, L. J., eds.), Taylor and Francis, New York, pp. 173–184.

    Google Scholar 

  19. Vilkner, T., Janasek, D., and Manz, A. (2004) Micro total analysis systems. Recent developments. Anal. Chem. 76, 3373–3386.

    Article  PubMed  CAS  Google Scholar 

  20. Burns, M. A., Johnson, B. N., Brahmasandra, S. N., et al. (1998) An integrated nanoliter DNA analysis device. Science 282, 484–487.

    Article  PubMed  CAS  Google Scholar 

  21. Kopp, M. U., deMello, A. J., and Manz, A. (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280, 1046–1048.

    Article  PubMed  CAS  Google Scholar 

  22. Waters, L. C., Jacobson, S. C., Kroutchinina, N., Khandurina, J., Foote, R. S., and Ramsey, J. M. (1998) Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal. Chem. 70, 158–162.

    Article  PubMed  CAS  Google Scholar 

  23. Waters, L. C., Jacobson, S. C., Kroutchinina, N., Khandurina, J., Foote, R. S., and Ramsey, J. M. (1998) Multiple sample PCR amplification and electrophoretic analysis on a microchip. Anal. Chem. 70, 5172–5176.

    Article  PubMed  CAS  Google Scholar 

  24. Dunn, W. C., Jacobson, S. C., Waters, L. C., et al. (2000) PCR amplification and analysis of simple sequence length polymorphisms in mouse DNA using a single microchip device. Anal. Biochem. 277, 157–160.

    Article  PubMed  CAS  Google Scholar 

  25. Khandurina, J., McKnight, T. E., Jacobson, S. C., Waters, L. C., Foote, R. S., and Ramsey, J. M. (2000) Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal. Chem. 72, 2995–3000.

    Article  PubMed  CAS  Google Scholar 

  26. Lagally, E. T., Simpson, P. C., and Mathies, R. A. (2000) Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sens. Actuators B. Chem. 63, 138–146.

    Article  Google Scholar 

  27. Lagally, E. T., Medintz, I., and Mathies, R. A. (2001) Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal. Chem. 73, 565–570.

    Article  PubMed  CAS  Google Scholar 

  28. Obeid, P. J., Christopoulos, T. K., Crabtree, H. J., and Backhouse, C. J. (2003) Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal. Chem. 75, 288–295.

    Article  PubMed  CAS  Google Scholar 

  29. Lagally, E. T., Scherer, J. R., Blazej, R. G., et al. (2004) Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal. Chem. 76, 3162–3170.

    Article  PubMed  CAS  Google Scholar 

  30. Sun, K., Yamaguchi, A., Ishida, Y., Matsuo, S., and Misawa, H. (2002) A heater-integrated transparent microchannel chip for continuous-flow PCR. Sens. Actuators B Chem. 84, 283–289.

    Article  Google Scholar 

  31. Northrup, M. A., Ching, M. T., White, R. M., and Watson, R. (1993) DNA amplification with a microfabricated reaction chamber, in Transducers ′93—the 7th International Conference on Solid-State Sensors and Actuators, Hiroyuki, Fujita, Japan, pp. 924–926.

    Google Scholar 

  32. Woolley, A. T., Hadley, D., Landre, P., deMello, A. J., Mathies, R. A., and Northrup, M. A. (1996) Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem. 68, 4081–4086.

    Article  PubMed  CAS  Google Scholar 

  33. Poser, S., Schulz, T., Dillner, U., et al. (1997) Chip elements for fast thermocycling. Sens. Actuators A Phys. 62, 672–675.

    Article  Google Scholar 

  34. Lee, T. M. H., Hsing, I. M., Lao, A. I. K., and Carles, M. C. (2000) A miniaturized DNA amplifier: Its application in traditional Chinese medicine. Anal. Chem. 72, 4242–4247.

    Article  PubMed  CAS  Google Scholar 

  35. Schneegass, I., Brautigam, R., and Kohler, J. M. (2001) Miniaturized flow-through PCR with different template types in a silicon chip thermocycler. Lab Chip 1, 42–49.

    Article  PubMed  CAS  Google Scholar 

  36. Trau, D., Lee, T. M. H., Lao, A. I. K., et al. (2002) Genotyping on a complementary metal oxide semiconductor silicon polymerase chain reaction chip with integrated DNA microarray. Anal. Chem. 74, 3168–3173.

    Article  PubMed  CAS  Google Scholar 

  37. Yoon, D. S., Lee, Y. S., Lee, Y., et al. (2002) Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip. J. Micromechanics Microeng. 12, 813–823.

    Article  CAS  Google Scholar 

  38. Rodriguez, I., Lesaicherre, M., Tie, Y., et al. (2003) Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis. Electrophoresis 24, 172–178.

    Article  PubMed  CAS  Google Scholar 

  39. Wilding, P., Shoffner, M. A., and Kricka, L. J. (1994) PCR in a silicon microstructure. Clin. Chem. 40, 1815–1818.

    PubMed  CAS  Google Scholar 

  40. Wilding, P., Shoffner, M. A., Cheng, J., Hvichia, G., and Kricka, L. J. (1995) Thermal cycling and surface passivation of micromachined devices for PCR. Clin. Chem. 41, 1367–1368.

    CAS  Google Scholar 

  41. Cheng, J., Shoffner, M. A., Hvichia, G. E., Kricka, L. J., and Wilding, P. (1996) Chip PCR. 2. Investigation of different PCR amplification systems in microfabricated silicon-glass chips. Nucleic Acids Res. 24, 380–385.

    Article  PubMed  CAS  Google Scholar 

  42. Cheng, J., Waters, L. C., Fortina, P., et al. (1998) Degenerate oligonucleotide primed polymerase chain reaction and capillary electrophoretic analysis of human DNA on microchip-based devices. Anal. Biochem. 257, 101–106.

    Article  PubMed  CAS  Google Scholar 

  43. Wilding, P., Kricka, L. J., Cheng, J., Hvichia, G., Shoffner, M. A., and Fortina, P. (1998) Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal. Biochem. 257, 95–100.

    Article  PubMed  CAS  Google Scholar 

  44. Nagai, H., Murakami, Y., Morita, Y., Yokoyama, K., and Tamiya, E. (2001) Development of a microchamber array for picoliter PCR. Anal. Chem. 73, 1043–1047.

    Article  PubMed  CAS  Google Scholar 

  45. Nagai, H., Murakami, Y., Yokoyama, K., and Tamiya, E. (2001) High-throughput PCR in silicon based microchamber array. Biosens. Bioelectron. 16, 1015–1019.

    Article  PubMed  CAS  Google Scholar 

  46. Northrup, M. A., Gonzalez, C., Hadley, D., et al. (1995) A MEMS-based miniature DNA analysis system. Transducers 95—the 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX. Stockholm, Sweden, pp. 764–767.

    Chapter  Google Scholar 

  47. Daniel, J. H., Iqbal, S., Millington, R. B., et al. (1998) Silicon microchambers for DNA amplification. Sens. Actuators A Phys. 71, 81–88.

    Article  Google Scholar 

  48. Taylor, T. B., Harvey, S. E., Lebak, L., et al. (1998) Process control for optimal PCR performance in glass microstructures. Biomed. Microdev. 1, 65–70.

    Article  CAS  Google Scholar 

  49. Chou, C. F., Changrani, R., Roberts, P., et al. (2002) A miniaturized cyclic PCR device-modeling and experiments. Microelectron. Eng. 61, 921–925.

    Article  Google Scholar 

  50. El-Ali, J., Perch-Nielsen, I. R., Poulsen, C. R., Bang, D. D., Telleman, P., and Wolff, A. (2004) Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor. Sens. Actuators A Phys. 110, 3–10.

    Article  Google Scholar 

  51. Giordano, B. C., Ferrance, J., Swedberg, S., Huhmer, A. F. R., and Landers, J. P. (2001) Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Anal. Biochem. 291, 124–132.

    Article  PubMed  CAS  Google Scholar 

  52. Hong, J. W., Fujii, T., Seki, M., Yamamoto, T., and Endo, I. (2000) PDMS (polydimethylsiloxane)-glass hybrid microchip for gene amplification, in 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine ⇐p; Biology. Lyon, France, pp. 407–410.

    Google Scholar 

  53. Hong, J. W., Fujii, T., Seki, M., Yamamoto, T., and Endo, I. (2001) Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxaneglass hybrid microchip. Electrophoresis 22, 328–333.

    Article  PubMed  CAS  Google Scholar 

  54. Liu, J., Enzelberger, M., and Quake, S. (2002) A nanoliter rotary device for polymerase chain reaction. Electrophoresis 23, 1531–1536.

    Article  PubMed  CAS  Google Scholar 

  55. Liu, J., Hansen, C., and Quake, S. R. (2003) Solving the “world-to-chip” interface problem with a microfluidic matrix. Anal. Chem. 75, 4718–4723.

    Article  PubMed  CAS  Google Scholar 

  56. Anderson, R. C., Su, X., Bogdan, G. J., and Fenton, J. (2000) A miniature integrated device for automated multistep genetic analysis. Nucleic Acids Res. 28, E60.

    Article  PubMed  CAS  Google Scholar 

  57. Yang, J., Liu, Y., Rauch, C. B., et al. (2002) High sensitivity PCR in plastic micro reactors. Lab Chip 2, 179–187.

    Article  PubMed  CAS  Google Scholar 

  58. Koh, C. G., Tan, W., Zhao, M., Ricco, A. J., and Fan, Z. H. (2003) Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection. Anal. Chem. 75, 4591–4598.

    Article  PubMed  CAS  Google Scholar 

  59. Strizhkov, B. N., Drobyshev, A. L., Mikhailovich, V. M., and Mirzabekov, A. D. (2000) PCR amplification on a microarray of gel-immobilized oligonucleotides: Detection of bacterial toxin-and drug-resistant genes and their mutations. Biotechniques 29, 844–857.

    PubMed  CAS  Google Scholar 

  60. Taylor, T. B., WinnDeen, E. S., Picozza, E., Woudenberg, T. M., and Albin, M. (1997) Optimization of the performance of the polymerase chain reaction in silicon-based microstructures. Nucleic Acids Res. 25, 3164–3168.

    Article  PubMed  CAS  Google Scholar 

  61. Tillib, S. V., Strizhkov, B. N., and Mirzabekov, A. D. (2001) Integration of multiple PCR amplifications and DNA mutation analyses by using oligonucleotide microchip. Anal. Biochem. 292, 155–160.

    Article  PubMed  CAS  Google Scholar 

  62. Belgrader, P., Smith, J. K., Weedn, V. W., and Northrup, M. A. (1998) Rapid PCR for identity testing using a battery-powered miniature thermal cycler. J. Forensic Sci. 43, 315–319.

    PubMed  CAS  Google Scholar 

  63. Ibrahim, M. S., Lofts, R. S., Jahrling, P. B., et al. (1998) Real-time microchip PCR for detecting single-base differences in viral and human DNA. Anal. Chem. 70, 2013–2017.

    Article  PubMed  CAS  Google Scholar 

  64. Northrup, M. A., Benett, B., Hadley, D., et al. (1998) A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Anal. Chem. 70, 918–922.

    Article  PubMed  CAS  Google Scholar 

  65. Ross, P. L., Davis, P. A., and Belgrader, P. (1998) Analysis of DNA fragments from conventional and microfabricated PCR devices using delayed extraction MALDI-TOF mass spectrometry. Anal. Chem. 70, 2067–2073.

    Article  PubMed  CAS  Google Scholar 

  66. Belgrader, P., Benett, W., Hadley, D., et al. (1998) Rapid pathogen detection using a microchip PCR array instrument. Clin. Chem. 44, 2191–2194.

    PubMed  CAS  Google Scholar 

  67. Belgrader, P., Hansford, D., Kovacs, G. T. A., et al. (1999) A minisonicator to rapidly disrupt bacterial spores for DNA analysis. Anal. Chem. 71, 4232–4236.

    Article  PubMed  CAS  Google Scholar 

  68. Belgrader, P., Benett, W., Hadley, D., et al. (1999) Infectious disease—PCR detection of bacteria in seven minutes. Science 284, 449–450.

    Article  PubMed  CAS  Google Scholar 

  69. Belgrader, P., Young, S., Yuan, B., et al. (2001) A battery-powered notebook thermal cycler for rapid multiplex real time PCR analysis. Anal. Chem. 73, 286–289.

    Article  PubMed  CAS  Google Scholar 

  70. Belgrader, P., Northrup, M. A., Benett, B., et al. (2002) Development of battery-powered portable instrumentation for rapid PCR analysis, in Integrated Microfabricated Biodevices (Heller, M. J. and Guttman, A., eds.), Marcel Dekker, New York, pp. 183–206.

    Google Scholar 

  71. Curcio, M. and Roeraade, J. (2003) Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification. Anal. Chem. 75, 1–7.

    Article  PubMed  CAS  Google Scholar 

  72. Nakano, H., Matsuda, K., Yohda, M., Nagamune, T., Endo, I., and Yamane, T. (1994) High-speed polymerase chain-reaction in constant flow. Biosci. Biotechnol. Biochem. 58, 349–352.

    Article  PubMed  CAS  Google Scholar 

  73. Liu, R. H., Yang, J., Lenigk, R., Bonanno, J., and Grodzinski, P. (2004) Selfcontained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem. 76, 1824–1831.

    Article  PubMed  CAS  Google Scholar 

  74. Shoffner, M. A., Cheng, J., Hvichia, G. E., Kricka, L. J., and Wilding, P. (1996) Chip PCR. 1. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Res. 24, 375–379.

    Article  PubMed  CAS  Google Scholar 

  75. Giordano, B. C., Copeland, E. R., and Landers, J. P. (2001) Towards dynamic coating of glass microchip chambers for amplifying DNA via the polymerase chain reaction. Electrophoresis 22, 334–340.

    Article  PubMed  CAS  Google Scholar 

  76. Munro, N. J., Huhmer, A. F. R., and Landers, J. P. (2001) Robust polymeric microchannel coatings for microchip-based analysis of neat PCR products. Anal. Chem. 73, 1784–1794.

    Article  PubMed  CAS  Google Scholar 

  77. Erill, I., Campoy, S., Erill, N., Barbe, J., and Aguilo, J. (2003) Biochemical analysis and optimization of inhibition and adsorption phenomena in glass-silicon PCRchips. Sens. Actuators B Chem. 96, 685–692.

    Article  Google Scholar 

  78. Krishnan, M., Burke, D. T., and Burns, M. A. (2004) Polymerase chain reaction in high surface-to-volume ratio SiO2 microstructures. Anal. Chem. 76, 6588–6593.

    Article  PubMed  CAS  Google Scholar 

  79. Panaro, N. J., Lou, X. J., Fortina, P., Kricka, L. J., and Wilding, P. (2004) Surface effects on PCR reactions in multichip microfluidic platforms. Biomed. Microdev. 6, 75–80.

    Article  CAS  Google Scholar 

  80. Park, N., Kim, S., and Hahn, J. H. (2003) Cylindrical compact thermal-cycling device for continuous-flow polymerase chain reaction. Anal. Chem. 75, 6029–6033.

    Article  Google Scholar 

  81. Chiou, J., Matsudaira, P., Sonin, A., and Ehrlich, D. (2001) A closed cycle capillary polymerase chain reaction machine. Anal. Chem. 73, 2018–2021.

    Article  PubMed  CAS  Google Scholar 

  82. Chaudhari, A. M., Woudenberg, T. M., Albin, M., and Goodson, K. E. (1998) Transient liquid crystal thermometry of microfabricated PCR vessel arrays. J. Microelectromechanical Syst. 7, 345–355.

    Article  CAS  Google Scholar 

  83. Lao, A. I. K., Lee, T. M. H., Hsing, I. M., and Ip, N. Y. (2000) Precise temperature control of microfluidic chamber for gas and liquid phase reactions. Sens. Actuators A Phys. 84, 11–17.

    Article  Google Scholar 

  84. Lin, Y. C., Yang, C. C., and Huang, M. Y. (2000) Simulation and experimental validation of micro polymerase chain reaction chips. Sens. Actuators B Chem. 71, 127–133.

    Article  Google Scholar 

  85. Erickson, D. and Li, D. (2002) Numerical simulations of a low power microchannel thermal cycling reactor. Intl. J. Heat Mass Transfer 45, 3759–3770.

    Article  CAS  Google Scholar 

  86. Chiou, J., Matsudaira, P., and Ehrlich, D. (2002) Thirty-cycle temperature optimization of a closed-cycle capillary PCR machine. Biotechniques 33, 557–564.

    PubMed  CAS  Google Scholar 

  87. Krishnan, M., Ugaz, V. M., and Burns, M. A. (2002) PCR in a Rayleigh-Bénard convection cell. Science 298, 793.

    Article  PubMed  Google Scholar 

  88. Ugaz, V. M. and Krishnan, M. (2004) Novel convective flow based approaches for high-throughput PCR thermocycling. J. Assoc. Lab. Automation 9, 318–323.

    Article  CAS  Google Scholar 

  89. Krishnan, M., Agrawal, N., Burns, M. A., and Ugaz, V. M. (2004) Reactions and fluidics in miniaturized natural convection systems. Anal. Chem. 76, 6254–6265.

    Article  PubMed  CAS  Google Scholar 

  90. Braun, D., Goddard, N. L., and Libchaber, A. (2003) Exponential DNA replication by laminar convection. Phys. Rev. Lett. 91, 158,103.

    Article  PubMed  Google Scholar 

  91. Braun, D. (2004) PCR by thermal convection. Modern Phys. Lett. B 18, 775–784.

    Article  CAS  Google Scholar 

  92. Chen, Z., Qian, S., Abrams, W. R., Malamud, D., and Bau, H. (2004) Thermosiphon-based PCR reactor: experiment and modeling. Anal. Chem. 76, 3707–3715.

    Article  PubMed  CAS  Google Scholar 

  93. Wheeler, E. K., Benett, W., Stratton, P., et al. (2004) Convectively driven polymerase chain reaction thermal cycler. Anal. Chem. 76, 4011–4016.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Spitzack, K.D., Ugaz, V.M. (2006). Polymerase Chain Reaction in Miniaturized Systems:. In: Minteer, S.D. (eds) Microfluidic Techniques. Methods In Molecular Biology™, vol 321. Humana Press. https://doi.org/10.1385/1-59259-997-4:97

Download citation

  • DOI: https://doi.org/10.1385/1-59259-997-4:97

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-517-0

  • Online ISBN: 978-1-59259-997-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics