Skip to main content

Hydrogel-Immobilized Antibodies for Microfluidic Immunoassays

Hydrogel Immunoassay

  • Protocol
Book cover Microfluidic Techniques

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 321))

  • 2397 Accesses

Abstract

The integration of immunoassays in microfluidic devices is a rapidly developing research area combining the power of immunoassays with the inherent benefits of microfluidics. Here, a general overview of microfluidic-based immunoassays is presented along with a method for immobilizing antibodies in polyacrylamide gel plugs set in microfluidic channels. These antigen-specific hydrogels can be rapidly formed by photopolymerizing monomer solutions mixed with antibodies or other large proteins. The resulting antigen-specific hydrogels contain pore sizes appropriate for physical entrapment of large antibodies while remaining permeable to smaller proteins. The open structure of these hydrogels enables the capture and concentration of target antigens present at low concentrations. Such physical entrapment provides a conceptually simple method of immobilization compared with immobilization of proteins on surfaces and offers advantages such as resistance to chemical and thermal denaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yalow, R. S. and Berson, S. A. (1959) Assay of plasma insulin in human subjects by immunological methods. Nature 184, 1648–1649.

    Article  PubMed  CAS  Google Scholar 

  2. Clarke, W. (2004) Immunoassays for therapeutic drug monitoring and clinical toxicology, in Handbook of Analytical Separations (Hempel, G., ed.), Elseveir Science, Amsterdam, the Netherlands, pp. 95–112.

    Google Scholar 

  3. Peruski, A. H. and Peruski, L. F. Jr. (2003) Immunological methods for detection and identification of infectious disease and biological warfare agents. Clin. Diagn. Lab. Immunol. 10, 506–513.

    PubMed  CAS  Google Scholar 

  4. Oliva, A. G., Cruz, H. J., and Rosa, C. C. (2001) Immunosensors for diagnostics. Sens. Update 9, 283–312.

    Article  CAS  Google Scholar 

  5. 5. Gosling, J. P. and Basso, L. V., eds. (1994) Immunoassay: Laboratory Analysis and Clinical Applications, Butterworth-Heinemann, Boston, MA.

    Google Scholar 

  6. Clausen, C. A. and Green, F. III. (1997) Antibody-mediated immunochemistry and immunoassay in plant-related diseases, in Methods in Plant Biochemistry and Molecular Biology, CRC Press, Boca Raton, FL, pp. 73–88.

    Google Scholar 

  7. 7. Work, T. S. and Work, E., eds. (1982) Laboratory Techniques in Biochemistry and Molecular Biology: An Introduction to Radioimmunoassay and Related Techniques. Vol. 6, Pt. 2, 2nd ed., Elsevier, Amsterdam, the Netherlands.

    Google Scholar 

  8. Woodhead, J. S. and Thompson, R.J. (1981) Immunological techniques in biochemical investigation. Methods Neurobiol. 1, 425–454.

    CAS  Google Scholar 

  9. Lee, J. W. and Colburn, W. A. (2002) Immunoassay techniques. Drugs Pharm. Sci. 117, 225–312.

    CAS  Google Scholar 

  10. Widdop, B. (2001) Drugs of abuse, in Immunoassay Handbook, 2nd ed. (Wild, D., ed.), Nature Publishing Group, London, UK, pp. 781–816.

    Google Scholar 

  11. Findlay, J. W. A., Smith, W. C., Lee, J. W., et al. (2000) Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. J. Pharm. Biomed. Anal. 21, 1249–1273.

    Article  PubMed  CAS  Google Scholar 

  12. Cook, C. E. (1992) New approaches in immunoassay techniques. Top. Pharm. Sci. 1991, Proc. Int. Congr. Pharm. Sci. International Pharmaceutical Federation (F.I.P.), 51st pp. 295–305.

    Google Scholar 

  13. Knopp, D. and Niessner, R. (2004) Biomonitors based on immunological principles, in Solid Wastes: Assessment, Monitoring and Remediation (Twardowska, T., Allen, H., Kettrup, A., and Lacy, W., eds.), Elsevier Science, Amsterdam, the Netherlands, pp. 505–537.

    Chapter  Google Scholar 

  14. Schneider, R. J. (2003) Environmental immunoassays. Anal. Bioanal. Chem. 375, 44–46.

    PubMed  CAS  Google Scholar 

  15. Mallat, E., Barcelo, D., Barzen, C., Gauglitz, G., and Abuknesha, R. (2001) Immunosensors for pesticide determination in natural waters. Trends Analyt. Chem. 20, 124–132.

    Article  CAS  Google Scholar 

  16. Van Emon, J. M. (2001) Immunochemical applications in environmental science. J. AOAC Int. 84, 125–133.

    PubMed  Google Scholar 

  17. Lee, N. A. and Kennedy, I. R. (2001) Environmental monitoring of pesticides by immunoanalytical techniques: validation, current status, and future perspectives. J. AOAC Int. 84, 1393–1406.

    PubMed  CAS  Google Scholar 

  18. Kaufman, B. M. (1996) Applications of immunoassay to pesticide analysis, in Progress in Food Contaminant Analysis (Gilbert, J., ed.), Blackie Academic and Professional, London, UK, pp.187–218.

    Chapter  Google Scholar 

  19. Aga, D. S. and Thurman, E. M. (1997) Environmental immunoassays: alternative techniques for soil and water analysis. ACS Symp. Ser. 657, 1–20.

    Article  CAS  Google Scholar 

  20. Stanker, L. H., Watkins, B. E., and Vanderlaan, M. (1991) Environmental monitoring by immunoassay. Pesticide Chemistry: Advances in international research, development, and legislation: proceedings of the Seventh International Congress of Pesticide Chemistry (IUPAC), Hamburg, 1990.

    Google Scholar 

  21. Ekins, R. (1993) Principles of immunoassays: principles of non-competitive methods. Methods Immunol. Anal. 1, 227–257.

    CAS  Google Scholar 

  22. Wengatz, I., Harris, A. S., Gilman, S. D., et al. (1996) Recent developments in immunoassays and related methods for the detection of xenobiotics. ACS Symp. Ser. 646, 110–126.

    Article  CAS  Google Scholar 

  23. Fukal, L. and Kas, J. (1989) The advantages of immunoassay in food analysis. Trends Anal. Chem. 8, 112–116.

    Article  CAS  Google Scholar 

  24. Wild, D., ed. (2001) The Immunoassay Handbook, 2nd ed., Nature Publishing Group, London, UK.

    Google Scholar 

  25. Deshpande, S. S., ed. (1996) Enzyme Immunoassays: From Concept to Product Development, Chapman and Hall, New York, NY.

    Google Scholar 

  26. Ngo, T. T. (1985) Enzyme mediated immunoassay: an overview, in Enzyme-Mediated Immunoassay (Ngo, T. T. and Lenhoff, H. M., ed.), Plenum Publishing, New York, NY, pp. 3–32.

    Google Scholar 

  27. Ullman, E. F. (2001) Homogeneous immunoassays, in Immunoassay Handbook, 2nd ed. (Wild, D., ed.), Nature Publishing Group, London, UK, pp. 177–197.

    Google Scholar 

  28. Ullman, E. F. (1999) Homogeneous immunoassays: historical perspective and future promise. J. Chem. Educ. 76, 781–788.

    Article  CAS  Google Scholar 

  29. Maiolini, R. (1987) Homogeneous phase immunoassays. Technique Biologie 13, 108–117.

    CAS  Google Scholar 

  30. Wild, D. (2001) Separation systems, in Immunoassay Handbook, 2nd ed. (Wild, D., ed.), Nature Publishing Group, London, UK, pp. 149–158.

    Google Scholar 

  31. Singh, A. K., Kilpatrick, P. K., and Carbonell, R. G. (1996) Application of antibody and fluorophore-derivatized liposomes to heterogeneous immunoassays for d-dimer. Biotechnol. Prog. 12, 272–280.

    Article  PubMed  CAS  Google Scholar 

  32. Guebitz, G. and Shellum, C. (1993) Flow-injection immunoassays. Anal. Chim. Acta 283, 421–428.

    Article  CAS  Google Scholar 

  33. Truchaud, A., Barclay, J., Yvert, J. P., and Capolaghi, B. (1991) Automated separation for heterogeneous immunoassays. J. Auto. Methods Manage. Chem. 13, 49–51.

    Article  CAS  Google Scholar 

  34. Edwards, J. C. and Moon, C. R. (1990) Enhanced detection systems for enzymelinked heterogeneous immunoassays: luminescence. Immunol. Ser. 53, 95–106.

    PubMed  CAS  Google Scholar 

  35. Erickson, D. and Li, D. (2004) Integrated microfluidic devices. Anal. Chim. Acta 507, 11–26.

    Article  CAS  Google Scholar 

  36. Sia, S. K. and Whitesides, G. M. (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576.

    Article  PubMed  CAS  Google Scholar 

  37. Hatch, A., Weigl, B. H., Zebert, D., and Yager, P. (1999) Microfluidic approaches to immunoassays. Proceedings of SPIE-The International Society for Optical Engineering 3877, 169–172.

    CAS  Google Scholar 

  38. Sato, K., Tokeshi, M., Odake, T., et al. (2000) Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip. Anal. Chem. 72, 1144–1147.

    Article  PubMed  CAS  Google Scholar 

  39. Wang, J., Ibanez, A., and Chatrathi, M. P. (2002) Microchip-based amperometric immunoassays using redox tracers. Electrophoresis 23, 3744–3749.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, J., Ibanez, A., Chatrathi, M. P., and Escarpa, A. (2001) Electrochemical enzyme immunoassays on microchip platforms. Anal. Chem. 73, 5323–5327.

    Article  PubMed  CAS  Google Scholar 

  41. Wang, J., Ibanez, A., and Prakash Chatrathi, M. (2003) On-chip integration of enzyme and immunoassays: simultaneous measurements of insulin and glucose. J. Am. Chem. Soc. 125, 8444–8445.

    Article  PubMed  CAS  Google Scholar 

  42. Sato, K., Tokeshi, M., Kimura, H., and Kitamori, T. (2001) Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoassay in a microchip for cancer diagnosis. Anal. Chem. 73, 1213–1218.

    Article  PubMed  CAS  Google Scholar 

  43. Chiem, N. H. and Harrison, D. J. (1998) Microchip systems for immunoassay: an integrated immunoreactor with electrophoretic separation for serum theophylline determination. Clin. Chem. 44, 591–598.

    PubMed  CAS  Google Scholar 

  44. Chiem, N. and Harrison, D. J. (1997) Microchip-based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline. Anal. Chem. 69, 373–378.

    Article  PubMed  CAS  Google Scholar 

  45. Bernard, A., Michel, B., and Delamarche, E. (2001) Micromosaic immunoassays. Anal. Chem. 73, 8–12.

    Article  PubMed  CAS  Google Scholar 

  46. Cheng, S. B., Skinner, C. D., Taylor, J., et al. (2001) Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay. Anal. Chem. 73, 1472–1479.

    Article  PubMed  CAS  Google Scholar 

  47. Buechler, K. F., Mcpherson, P., Anderberg, J., Nakamura, K., Lesefko, S., and Noar, B. (2001) Microarray immunoassays in the microfluidic Triage protein chip. Micro Total Analysis Systems 2001, Proceedings μTAS 2001 Symposium, 5th, Monterey, CA, Oct. 21–25, 2001, pp. 42–44.

    Google Scholar 

  48. Seong, G. H., Zhan, W., and Crooks, R. M. (2002) Fabrication of microchambers defined by photopolymerized hydrogels and weirs within microfluidic systems: application to DNA hybridization. Anal. Chem. 74, 3372–3377.

    Article  PubMed  CAS  Google Scholar 

  49. Zhan, W., Seong, G. H., and Crooks, R. M. (2002) Hydrogel-based microreactors as a functional component of microfluidic systems. Anal. Chem. 74, 4647–4652.

    Article  PubMed  CAS  Google Scholar 

  50. Zangmeister, R. A. and Tarlov, M. J. (2004) DNA displacement assay integrated into microfluidic channels. Anal. Chem. 76, 3655–3659.

    Article  PubMed  CAS  Google Scholar 

  51. Olsen, K. G., Ross, D. J., and Tarlov, M. J. (2002) Immobilization of DNA hydrogel plugs in microfluidic channels. Anal. Chem. 74, 1436–1441.

    Article  PubMed  CAS  Google Scholar 

  52. Johnson, T. J., Ross, D., Gaitan, M., and Locascio, L. E. (2001) Laser modification of preformed polymer microchannels: Application to reduce band broadening around turns subject to electrokinetic flow. Anal. Chem. 73, 3656–3661.

    Article  PubMed  CAS  Google Scholar 

  53. Waddell, E. A., Barker, S. L. R., Rose, D. J., Locascio, L. E., and Kramer, G. W. (2000) Laser ablation of polymer substrates for the fabrication of microfluidic devices. Abstr. Pap. Am. Chem. Soc. 220, U91–U92.

    Google Scholar 

  54. Zangmeister, R. A. and Tarlov, M. J. (2003) UV graft polymerization of polyacrylamide hydrogel plugs in microfluidic channels. Langmuir 19, 6901–6904.

    Article  CAS  Google Scholar 

  55. Thomas, G., Locascio, L., and Tarlov, M. Hydrogel-bound antibodies for microfluidic analysis of proteins, submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Thomas, G., El-Giar, E.M., Locascio, L.E., Tarlov, M.J. (2006). Hydrogel-Immobilized Antibodies for Microfluidic Immunoassays. In: Minteer, S.D. (eds) Microfluidic Techniques. Methods In Molecular Biology™, vol 321. Humana Press. https://doi.org/10.1385/1-59259-997-4:83

Download citation

  • DOI: https://doi.org/10.1385/1-59259-997-4:83

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-517-0

  • Online ISBN: 978-1-59259-997-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics