Skip to main content

Contraction Study of a Single Cardiac Muscle Cell in a Microfluidic Chip

  • Protocol
Microfluidic Techniques

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 321))

Abstract

This chapter introduces a microfluidic method to study the contraction of a single cardiac muscle cell (cardiomyocyte). This method integrates single-cell selection, cell retention, dye loading, chemical stimulation, and fluorescence measurement for intracellular calcium on one microfluidic chip. Before single-cell experiments, the bonded chip was modified in order to make the channel deep enough to accommodate a large, single cardiomyocyte. After the modification, a single heart muscle cell could be selected and retained at a cell retention structure. Fluo-4 AM was loaded in the cell for the measurement of intracellular calcium ion concentration in the cell. Subsequently, caffeine was introduced into the chamber to induce the contraction of the cardiomyocyte. During contraction, fluorescence measurement was used to monitor the intracellular calcium level, and an optical imaging system was used to monitor the shape to confirm the contraction. The resting [Ca2+]i of cardiomyocyte was determined and was consistent with the value of approx 100 nM in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bers, D. M., ed. (2001) Excitation-Contraction Coupling and Cardiac Contractile Force, Kluwer Academic, Dordrecht, The Netherlands, pp. 316–323.

    Google Scholar 

  2. Kennedy, R. T., Oates, M. D., Cooper, B. R., Nicherson, B., and Jorgenson, J. W. (1989) Microcolumn separations and the analysis of single cells. Science 246, 57–63.

    Article  PubMed  CAS  Google Scholar 

  3. Wallingford, R. A. and Ewing, A. G. (1988) Capillary zone electrophoresis with electrochemical detection in 12.7 microns diameter columns. Anal. Chem. 60, 1972–1975.

    Article  PubMed  CAS  Google Scholar 

  4. Jin, W., Li, X., and Gao, N. (2003) Simultaneous determination of tryptophan and glutathione in individual rat hepatocytes by capillary zone electrophoresis with electrochemical detection at a carbon fiber bundle—Au/Hg dual electrode. Anal. Chem. 75, 3859–3864.

    Article  PubMed  CAS  Google Scholar 

  5. Harrison, D. J., Fluri, K., Seiler, K., Fan, Z., Effenhauser, C. S., and Manz A. (1993) Micromachining a miniaturized capillary electrophoresisCbased chemical analysis system on a chip. Science 261, 895–897

    Article  PubMed  CAS  Google Scholar 

  6. Li, P. C. H. and Harrison, D. J. (1997) Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal. Chem. 69, 1564–1568.

    Article  PubMed  CAS  Google Scholar 

  7. Yang, M., Li, C., and Yang, J. (2002) Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal. Chem. 74, 3991–4001.

    Article  PubMed  CAS  Google Scholar 

  8. Krüger, J., Singh, K., O’Neill, A., Jackson, C., Morrison, A., and O’Brien, P. (2002) Development of a microfluidic device for fluorescence activated cell sorting. J. Micromech. Microeng. 12, 486–494.

    Article  Google Scholar 

  9. Schilling, E. A., Kamholz, A. E., and Yager, P. (2002) Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal. Chem. 74, 1798–1804.

    Article  PubMed  CAS  Google Scholar 

  10. Müller, T., Gradl, G., Howitz, S., Shirley, S., Schnelle, T., and Fuhr, G. (1999) A 3-D microelectrode system for handling and caging single cells and particles. Biosens. Bioelectron. 14, 247–256.

    Article  Google Scholar 

  11. Arai, F., Ichikawa, A., Ogawa, M., Fukuda, T., Horio, K., and Itoigawa, K. (2001) High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis. Electrophoresis 22, 283–288.

    Article  PubMed  CAS  Google Scholar 

  12. Dittrich, P. S. and Schwille, P. (2003) An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Anal. Chem. 75, 5767–5774.

    Article  PubMed  CAS  Google Scholar 

  13. McClain, M. A., Culbertson, C. T., Jacobson, S. C., Allbritton, N. L., Sims, C. E., and Ramsey, J. M. (2003) Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 75, 5646–5655.

    Article  PubMed  CAS  Google Scholar 

  14. Wilding, P., Pfahler, J., Bau, H. H., Zemel, J. N., and Kricka, L. (1994) Manipulation and flow of biological fluids in straight channels micromachined in silicon. J. Clin. Chem. 40, 43–47.

    CAS  Google Scholar 

  15. Wilding, P., Kricka, L. J., Cheng, J., and Hvichia, G. (1998) Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal. Biochem. 257, 95–100.

    Article  PubMed  CAS  Google Scholar 

  16. Wheeler, A. R., Throndset, W. R., Whelan, R. J., et al. (2003) Microfluidic device for single-cell analysis. Anal. Chem. 75, 3581–3586.

    Article  PubMed  CAS  Google Scholar 

  17. Parce, J. W., Owicki, J. C., Kercso, K. M., et al. (1989) Detection of cell-affecting agents with a silicon biosensor. Science 246, 243–247.

    Article  PubMed  CAS  Google Scholar 

  18. Voldman, J., Gray, M. L., Toner, M., and Schmidt, M. A. (2002) A microfabrication-based dynamic array cytometer. Anal. Chem. 74, 3984–3990.

    Article  PubMed  CAS  Google Scholar 

  19. Wilding, P., Pfahler, J., Bau, H. H., Zemel, J. N., and Kricka, L. J. (1994) Manipulation and flow of biological fluids in straight channels micromachined in silicon. Clin. Chem. 40, 43–47.

    PubMed  CAS  Google Scholar 

  20. McClain, M. A., Culbertson, C. T., Jacobson, S. C., and Ramsey, J. M. (2001) Flow cytometry of escherichia coli on microfluidic devices. Anal. Chem. 73, 5334–5338.

    Article  PubMed  CAS  Google Scholar 

  21. Culbertson, C. T., Alarie, J. P., Mcclain, M. A., Jacobson, S. C., and Ramsery, J. M. (2001) Rapid cellular assays on microfabricated fluidic device, in Micro Total Analysis Systems 2001, Proceedings μTAS 2001 Symposium, 5th, Monterey, CA, Oct. 21–25, pp. 285–28

    Google Scholar 

  22. He, B., Tan, L., and Regnier, F. (1999) Microfabricated filters for microfluidic analytical systems. Anal. Chem. 71, 1464C1468.

    Google Scholar 

  23. Li, P. C. H., de Camprieu, L., Cai, J., and Sangar, M. (2004) Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips. Lab Chip. 4, 174–180.

    Article  PubMed  CAS  Google Scholar 

  24. Grad, G., Müller, T., Pfennig, A., Shirley, S., Schnelle, T., and Fuhr, G. (2000) New micro devices for single cell analysis, cell sorting and cloning-on-a-chip: the cytocon instrument, in Micro Total Analysis Systems 2000, Proceedings of the μTAS Symposium, 4th, Enschede, Netherlands, May 14–18, pp. 443–446

    Google Scholar 

  25. Voldman, J., Gray, M. L., Toner, M., and Schmidt, M. A. (2002) A microfabrication-based dynamic array cytometer. Anal. Chem. 74, 3984–3990.

    Article  PubMed  CAS  Google Scholar 

  26. Matsubara, Y., Murakami, Y., Kinpara, T., Morita, Y., Yokoyama, K., and Tamiya, E. (2001) Allergy sensor using animal cells with microfuidics, in Micro Total Analysis Systems 2001, Proceedings mTAS 2001 Symposium, 5th, Monterey, CA, Oct. 21–25, 299–30

    Google Scholar 

  27. Peng, L. X. Y. and Li, P. C. H. (2004) A three-dimensional flow control concept for single-cell experiments on a microchip (I): cell selection, cell retention, cell culture, cell balancing and cell scanning. Anal. Chem. 76, 5273–5281.

    Article  PubMed  CAS  Google Scholar 

  28. Peng, L. X. Y. and Li, P. C. H. (2004) A three-dimensional flow control concept for single-cell experiments on a microchip (II): fluorescein diacetate metabolism and calcium mobilization in a single yeast cell as stimulated by glucose and pH changes. Anal. Chem. 76, 5282–5292.

    Article  PubMed  CAS  Google Scholar 

  29. Li, P. C. H., Wang, W., and Parameswaran, M. (Ash) (2003) An acoustic wave sensor incorporated with a microfluidic chip for analyzing muscle cell contraction. Analyst 128, 225C231.

    Google Scholar 

  30. Sugi, H. (1998) Current Methods in Muscle Physiology: Advantages, Problems and Limitations, Oxford University Press, New York.

    Google Scholar 

  31. Colomo, F., Poggesi, C., and Tesi, T. (1994) Force responses to rapid length changes in single intact cells from frog heart. J. Physiol. 475, 347.

    PubMed  CAS  Google Scholar 

  32. Hall, J. S., Korkidis, K. A., and Maskevich, D. L. (1988) Fluorometric calcium measurement. Nature 331, 729–729.

    Article  PubMed  CAS  Google Scholar 

  33. Yu, Z., Tibbits, G. F., and McNeill, J. H. (1994) Cellular functions of diabetic cardiomyocytes: contractility, rapid-cooling contracture, and ryanodine binding. Am. J. Physiol. 266, H2082–H2089.

    PubMed  CAS  Google Scholar 

  34. Takeishi, Y., Chu, G., Kirkpatrick, D. M., et al. (1998) In vivo phosphorylation of cardiac troponin I by protein kinase Cbeta2 decreases cardiomyocyte calcium responsiveness and contractility in transgenic mouse hearts. J. Clin. Invest. 102, 72–78.

    Article  PubMed  CAS  Google Scholar 

  35. Lindner, M., Brandt, M. C., Sauer, H., Hescheler, J., Böhle, T., and Beuckelmann, D. J. (2002) Calcium sparks in human ventricular cardiomyocytes from patients with terminal heart failure. Cell Calcium 31, 175–182.

    Article  PubMed  CAS  Google Scholar 

  36. Brandt, P. W., Colomo, F., Piroddi, N., Poggesi, C., and Tesi, C. (1998) Force regulation by Ca2+ in skinned single cardiac myocytes of frog. Biophys. J. 74, 1994–2004.

    Article  PubMed  CAS  Google Scholar 

  37. Garrett, R. H. and Grisham, C. M., eds. (1999) in Biochemistry, 2nd ed., Saunders College Publishing, New York, pp. 540–561.

    Google Scholar 

  38. Ebashi, S. (1961) Calcium binding activity of vesicular relaxing factor. J. Biochem. 50, 236–244.

    CAS  Google Scholar 

  39. Ebashi, S. and Lipmann, F. (1962) Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. Cell Biol. 14, 389–400.

    Article  PubMed  CAS  Google Scholar 

  40. Ebashi, S. (1974) Regulatory mechanism of muscle contraction with special reference to Ca-troponin-tripomyosin system. Essays Biochem. 10, 1–36.

    PubMed  CAS  Google Scholar 

  41. Ebashi, S., Ebashi, F., and Kodama, A. (1967) Troponin is the Ca2+ receptive protein in the contractile system. J. Biochem. 62, 137–138.

    PubMed  CAS  Google Scholar 

  42. Ebashi, S. and Kodama, A. (1965) A new protein factor promoting aggregation of tropomyosin. J. Biochem. 58, 107–108.

    PubMed  CAS  Google Scholar 

  43. Morgan, K. G., Brozovich, F. V., and Jiang, M. (1988) Measurements of intracellular calcium concentration in mammalian vascular smooth muscle cells during agonist-induced contractions. Biochem. Soc. Trans. 16, 493.

    PubMed  CAS  Google Scholar 

  44. Cross, K. M. L., Dahm, L. M., and Bowers, C. W. (2000) Simultaneous measures of contraction and intracellular calcium in single, cultured smooth muscle cells. In Vitro Cell. Dev. Biol. Anim. 36, 50–57.

    Article  PubMed  CAS  Google Scholar 

  45. Stagg, M. A., Malik, A. H., MacLeod, K. T., and Terracciano, C. M. N. (2004) The effects of overexpression of the Na+/Ca2+ exchanger on calcium regulation in hypertrophied mouse cardiac myocytes. Cell Calcium 36, 111–118.

    Article  PubMed  CAS  Google Scholar 

  46. Shlykov, S. G. and Sanborn, B. M. (2004) Stimulation of intracellular Ca2+ oscillations by diacylglycerol in human myometrial cells. Cell Calcium 36, 157–164.

    Article  PubMed  CAS  Google Scholar 

  47. Bradley, K. N., Craig, J. W., Muir, T. C., and McCarron, J. G. (2004) The sarcoplasmic reticulum and sarcolemma together form a passive Ca2+ trap in colonic smooth muscle. Cell Calcium 36, 29–41.

    Article  PubMed  CAS  Google Scholar 

  48. Ridgeway, E. B. and Ashley, C. C. (1967) Calcium transients in single muscle fibers. Biochem. Biophys. Res. Commun. 29, 229–234.

    Article  Google Scholar 

  49. Takahashi, A., Camacho, P., Lechleiter, J. D., and Herman, B. (1999) Measurement of intracellular calcium. Physiol. Rev. 79, 1089–1125.

    PubMed  CAS  Google Scholar 

  50. Wahl, M., Lucherini, M. J., and Gruenstein, E. (1990) Intracellular Ca2+ measurement with Indo-1 in substrate-attached cells: advantages and special considerations. Cell Calcium 11, 487–500.

    Article  PubMed  CAS  Google Scholar 

  51. Gee, K. R., Brown, K. A., Chen, W.-N. U., Bishop-Stewart, J., Gray, D., and Johnson, I. (2000) Chemical and physiological characterization of fluo-4 Ca2+ indicator dyes. Cell Calcium 27, 97–106.

    Article  PubMed  CAS  Google Scholar 

  52. Bers, D. M. (1987) Ryanodine and the calcium content of cardiac SR assessed by caffeine and rapid cooling contractures. Am. J. Physiol. Cell Physiol. 253, C408–415.

    CAS  Google Scholar 

  53. Weber, A. and Herz, R. (1968) The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J. Gen. Physiol. 52, 750–759.

    Article  PubMed  CAS  Google Scholar 

  54. Manz, A., Harrison D. J., Verpoorte, E. M. J., et al. (1992) Planar chips technology for miniaturization and integration of separation techiques into monitoring system. J. Chromatogr. 593, 253–258.

    Article  CAS  Google Scholar 

  55. Huang, J., Hove-Madsen, L., and Tibbits, G. F. (2005) Na+/Ca2+ exchange activity in neonatal rabbit ventricular myocytes. Am. J. Physiol. Cell Physiol. 288, C195–C203.

    PubMed  CAS  Google Scholar 

  56. Keir, R., Igata, E., Arundell, M., et al. (2002) In situ substrate formation and improved detection using microfluidics. Anal. Chem. 74, 1503–1508.

    Article  PubMed  CAS  Google Scholar 

  57. Liang, Z., Chiem, N., Ocvirk, G., Tang, T., Fluri, K., and Harrison, D. J. (1996) Microfabrication of a planar absorbance and fluorescence cell for integrated capillary electrophoresis devices. Anal. Chem. 68, 1040–1046.

    Article  CAS  Google Scholar 

  58. Baker, A. J., Brandes, R., Schreur, J. H. M., Camacho, S. A., and Weiner, M. W. (1994) Protein and acidosis alter calcium-binding and fluorescence spectra of the calcium indicator indo-1. Biophys. J. 67, 1646–1654.

    Article  PubMed  CAS  Google Scholar 

  59. Hove-Madsen, L. and Bers, D. M. (1992) Indo-1 binding to protein in permeabilized ventricular myocytes alters its spectral and Ca binding properties. Biophys. J. 63, 89–97.

    Article  PubMed  CAS  Google Scholar 

  60. Owen, C. S. (1991) Spectra of intracellular Fura-2. Cell Calcium 12, 385–393.

    Article  PubMed  CAS  Google Scholar 

  61. Owen, C. S., Sykes, N. L., Shuler, R. L., and Ost, D. (1991) Non-calcium environmental sensitivity of intracellular indo-1. Anal. Biochem. 192, 142–148.

    Article  PubMed  CAS  Google Scholar 

  62. Ganitkevich, V. Y. (1998) Use of indo-1FF for measurements of rapid micromolar cytoplasmic free Ca2+ increments in a single smooth muscle cell. Cell Calcium 23, 313–322.

    Article  PubMed  CAS  Google Scholar 

  63. Cabrera, C. R. and Yager, P. (2001) Continuous concentration of bacteria in a microfluidic flow cell using electrokinetic techniques. Electrophoresis 22, 355–362.

    Article  PubMed  CAS  Google Scholar 

  64. Fu, L.-M., Yang, R.-J., Lin, C.-H., Pan, Y.-J., and Lee, G.-B. (2004) Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Anal. Chim. Acta 507, 163–169.

    Article  CAS  Google Scholar 

  65. Yoshida, M., Tohda, K., and Gratzl, M. (2003) Hydrodynamic micromanipulation of individual cells onto patterned attachment sites on biomicroelectromechanical system chips. Anal. Chem. 75, 4686–4690.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Li, X., Li, P.C.H. (2006). Contraction Study of a Single Cardiac Muscle Cell in a Microfluidic Chip. In: Minteer, S.D. (eds) Microfluidic Techniques. Methods In Molecular Biology™, vol 321. Humana Press. https://doi.org/10.1385/1-59259-997-4:199

Download citation

  • DOI: https://doi.org/10.1385/1-59259-997-4:199

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-517-0

  • Online ISBN: 978-1-59259-997-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics