Skip to main content

A Sensitive Sandwich DNA Array Using Fluorescent Nanoparticle Probes

  • Protocol
Microfluidic Techniques

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 321))

  • 2126 Accesses

Abstract

An ultrasensitive sandwich DNA array using highly fluorescent and photostable dye-doped silica nanoparticles is described. Compared to traditional sandwich arrays in which fluorophores have been used to signal target DNA molecules, the developed nanoparticle probes provide a much stronger fluorescent emission. Signal amplification of the dye-doped silica nanoparticles originates from the large number of dye molecules doped inside each individual nanoparticle. In addition, the silica matrix of the nanoparticles protects dye molecules from photobleaching. Thus, the dye-doped nanoparticles provide a constant fluorescent signal that is sufficient for detection of trace amounts of target DNA. By immobilizing a complementary DNA sequence to the target onto the nanoparticle surface, a fluorescent nanoparticle-DNA probe is formed. These nanoparticle probes are then used as superemitting reagents to perform a typical sandwich assay. By using a high-resolution fluorescent microscope, individual nanoparticle- DNA probes that have been hybridized to capture target strands can be observed clearly at low target DNA concentrations. More important, the number of the nanoparticle-DNA probes hybridized to the target DNA is proportional to the target DNA concentration in solution. By counting the number of localized fluorescent “spots” on the array, the target DNA concentration can be determined. In this chapter, detailed methods used to synthesize nanoparticle-DNA probes, fabricate the sandwich array, prepare the substrate, and quantitatively determine DNA concentration are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cotton, R. G. H. (1997) Mutation Detection, Oxford University Press, Oxford, UK.

    Google Scholar 

  2. Neary, J. T. (2000) Trophic actions of extracellular ATP: gene expression profiling by DNA array analysis. J. Auton. Nerv. Syst. 81, 200–204.

    Article  PubMed  CAS  Google Scholar 

  3. Taton, T. A., Mirkin, C. A., and Letsinger, R. L. (2000) Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760.

    Article  PubMed  CAS  Google Scholar 

  4. Broketa, M., Vince, A., Drazenovic, V., Sim, R., and Mlinaric-Galinovic, G. (2001) Non-radioactive digoxigenin DNA labeling and immunologic detection of HSVPCR products. J. Clin. Virol. 23, 17–23.

    Article  PubMed  CAS  Google Scholar 

  5. Weiss, S. (1999) Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683.

    Article  PubMed  CAS  Google Scholar 

  6. Fang, X. and Tan, W. (1999) Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation. Anal. Chem. 71, 3101–3105.

    Article  PubMed  CAS  Google Scholar 

  7. Kim, J. M., Ohtani, T., Sugiyama, S., Hirose, T., and Muramatsu, H. (2001) Simultaneous topographic and fluorescence imaging of single DNA molecules for DNA analysis with a scanning near-field optical/atomic force microscope. Anal. Chem. 73, 5984–5991.

    Article  PubMed  CAS  Google Scholar 

  8. Benters, R., Niemeyer, C. M., Drutschmann, D., Blohm, D., and Wohrle, D. (2002) DNA microarrays with PAMAM dendritic linker systems. Nucleic Acids Res. 30, e10/1–e10/7.

    Article  CAS  Google Scholar 

  9. Chan, W. C. W. and Nie, S. (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.

    Article  PubMed  CAS  Google Scholar 

  10. Lin, Z., Su, X., Mu, Y., and Jin, Q. (2004) Methods for labeling quantum dots to biomolecules. J. Nanosci. Nanotechnol. 4, 641–645.

    Article  PubMed  CAS  Google Scholar 

  11. Kaiser, S., Mensing, T., Worschech, L., Klopf, F., Reithmaier, J. P., and Forchel, A. (2002) Optical spectroscopy of single InAs/InGaAs quantum dots in a quantum well. Appl. Phys. Lett. 81, 4898–4900.

    Article  CAS  Google Scholar 

  12. Zumbuhl, D. M., Marcus, C. M., Hanson, M. P., and Gossard, A. C. (2004) Cotunneling spectroscopy in few-electron quantum dots. Phys. Rev. Lett. 93, 256801/1–256801/4.

    Article  Google Scholar 

  13. Cao, Y. W. C., Jin, R. C., and Mirkin, C. A. (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540.

    Article  PubMed  CAS  Google Scholar 

  14. Reichert, J., Csaki, A., Kohler, M., and Fritzsche, W. (2000) Chip-based optical detection of DNA hybridization by means of nanobead labeling. Anal. Chem. 72, 6025–6029.

    Article  PubMed  CAS  Google Scholar 

  15. Taylor, J. R., Fang, M., and Nie, S. (2000) Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal. Chem. 72, 1979–1986.

    Article  PubMed  CAS  Google Scholar 

  16. Maxwell, D. J., Taylor, J. R., and Nie, S. (2002) Self-assembled nanoparticles probes for recognition and detection of biomolecules. J. Am. Chem. Soc. 124, 9606–9612.

    Article  PubMed  CAS  Google Scholar 

  17. Pena, S. R. N., Raina, S., Goodrich, G. P., Fedoroff, N. V., and Keating, C. D. (2002) Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotides. J. Am. Chem. Soc. 124, 7314–7323.

    Article  CAS  Google Scholar 

  18. Li, Z., Jin, R. C., Mirkin, C. A., and Letsinger, R. L. (2002) Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res. 30, 1558–1562.

    Article  PubMed  CAS  Google Scholar 

  19. Park, S. J., Taton, T. A., and Mirkin, C. A. (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503–1506.

    Article  PubMed  CAS  Google Scholar 

  20. Santra, S. M., Wang, K., Tapec, R., and Tan, W. (2001) Development of novel dyedoped silica nanoparticles for biomarker application. J. Biomed. Opt. 6, 160–166.

    Article  PubMed  CAS  Google Scholar 

  21. Zhao, X., Hilliard, L. R., Mechery, S. J., Wang, Y., Jin, S., and Tan, W. (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. USA 101, 15,027–15,032.

    Article  PubMed  CAS  Google Scholar 

  22. Zhao, X., Bawge, R., and Tan, W. (2004) Synthesis of organic dye doped silica nanoparticles in reverse microemulsion. Adv. Mater. 16, 173–176.

    Article  CAS  Google Scholar 

  23. Zhao, X., Dytocio, R. T., and Tan, W. (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc. 125, 11,474–11,475.

    Article  PubMed  CAS  Google Scholar 

  24. Zhao, X., Tapec, R., and Tan, W. (2003) Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Anal. Chem. 75, 3476–3483.

    Article  PubMed  CAS  Google Scholar 

  25. Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., and Rudzinski, W. E. (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70, 1–20.

    Article  PubMed  CAS  Google Scholar 

  26. Harma, H., Soukka, T., and Lövgren, T. (2001) Europium nanoparticles and timeresolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin. Chem. 47, 561–568.

    PubMed  CAS  Google Scholar 

  27. Chrisey, L. A., Lee, G. U., and O’Ferral, C. E. (1996) Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucleic Acids. Res. 24, 3031–3039.

    Article  PubMed  CAS  Google Scholar 

  28. Rogers, Y., Jiang-Baucom, P., Huang, Z., Bogdanov, V., Anderson, S., and Boyce-Jacino, M. (1999) Immobilization of oligonucleotides onto a glass support via disulfide bonds: a method for preparation of DNA microarrays. Anal. Biochem. 266, 23–30.

    Article  PubMed  CAS  Google Scholar 

  29. Osborne, M. A., Furey, W. S., Klenerman, D., and Balasubramanian, S. (2000) Single-molecule analysis of DNA immobilized on microspheres. Anal. Chem. 72, 3678–3681.

    Article  PubMed  CAS  Google Scholar 

  30. Fang, X., Liu, X., Schuster, S., and Tan, W. (1999) Designing a novel molecular beacon for surface immobilized DNA hybridization studies. J. Am. Chem. Soc. 121, 2921–2922.

    Article  CAS  Google Scholar 

  31. Zhang, P. and Tan, W. (2000) Direct observation of single molecule generation at a solid-liquid interface. Chem. Eur. J. 6, 1087–1092.

    Article  PubMed  CAS  Google Scholar 

  32. Stöber, W., Fink, A., and Bohn, E. (1968) Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69.

    Article  Google Scholar 

  33. Stathatos, E., Lianos, P., DelMonte, F., Levy, D., and Tsiourvas, D. (1997) Formation of TiO2 nanoparticles in reverse micelles and their deposition as thin films on glass substrates. Langmuir 13, 4295–4300.

    Article  CAS  Google Scholar 

  34. Shiojiri, S., Hirai, T., and Komasawa, I. (1998) Immobilization of semiconductor nanoparticles formed in reverse micelles into polyurea via in situ polymerization of diisocyanates. Chem. Commun. 14, 1439–1440.

    Article  Google Scholar 

  35. Li, T., Moon, J., Morrone, A. A., Mecholsky, J. J., Talham, D. R., and Adair, J. H. (1999) Preparation of Ag/SiO2 nanosize composites by a reverse micelle and solgel technique. Langmuir 15, 4328–4334.

    Article  CAS  Google Scholar 

  36. Shah, D. O. (1998) Micelles, Microemulsions, and Monolayers: Quarter Century Progress at the University of Florida, Marcel Dekker, New York, pp. 19–26.

    Google Scholar 

  37. Tapec, R., Zhao, X., and Tan, W. (2002) Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J. Nanosci. Nanotechnol. 2, 1–5.

    Article  Google Scholar 

  38. Wang, L., Yang, C., and Tan, W. (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett. 5, 37–43.

    Article  PubMed  CAS  Google Scholar 

  39. Hilliard, L. R., Zhao, X., and Tan, W. (2002) The immobilization of oligonucleotides onto silica nanoparticles. Anal. Chim. Acta 470, 51–56.

    Article  CAS  Google Scholar 

  40. Qhobosheane, M., Santra, S., Zhang, P., and Tan, W. (2001) Biochemically functionalized silica nanoparticles. Analyst 126, 1274–1278.

    Article  PubMed  CAS  Google Scholar 

  41. Rogers, Y. H., Jiang-Baucom, P., Huang, Z. J., Bogdanov, V., Anderson, S., and Boyce-Jacino, M. T. (1999) Immobilization of oligonucleotides onto a glass support via disulfide bonds: a method for preparation of DNA microarrays. Anal. Biochem. 266, 23–30.

    Article  PubMed  CAS  Google Scholar 

  42. Mascini, M., Fortunati, S., Moscone, D., Pallexchi, G., Massi-Benedetti, M., and Fabietti, P. (1985) An L-lactate sensor with immobilized enzyme for use in in vivo studies with an endocrine artificial pancreas. Clin. Chem. 31, 451–453.

    PubMed  CAS  Google Scholar 

  43. Bangs Laboratories, 9025 Technology Drive, Fishers, IN 46038-2866, 1-800-387-0672.

    Google Scholar 

  44. Bonnet, G., Tyagi, S., Libchaber, A., and Kramer, F. R. (1999) Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc. Natl. Acad. Sci. USA 96, 6171–6176.

    Article  PubMed  CAS  Google Scholar 

  45. Zhao, X., Hilliard, L. R., Wang, K., and Tan, W. (2004) in Encyclopedia of Nanoscience and Nanotechnology vol. 1 (Nalwa, H. S., ed.), American Scientific Publishers, Stevenson Ranch, CA, pp. 255–268.

    Google Scholar 

  46. Drake, T., Zhao, X., and Tan, W. (2004) Bioconjugated silica nanoparticles for bioanalytical applications, in Nanobiotechnology: Methods, Concepts, and Perspectives, (Niemeyer, Christ M Chad Mirkin, ed.), Wiley-VCH, Germany, pp. 444–458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Zhao, X., Pierce, D.T., Huan, Y. (2006). A Sensitive Sandwich DNA Array Using Fluorescent Nanoparticle Probes. In: Minteer, S.D. (eds) Microfluidic Techniques. Methods In Molecular Biology™, vol 321. Humana Press. https://doi.org/10.1385/1-59259-997-4:141

Download citation

  • DOI: https://doi.org/10.1385/1-59259-997-4:141

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-517-0

  • Online ISBN: 978-1-59259-997-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics