In Vitro Models for Studying Trophoblast Transcellular Transport

  • Claudia J. Bode
  • Hong Jin
  • Erik Rytting
  • Peter S. Silverstein
  • Amber M. Young
  • Kenneth L. Audus
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 122)


In vitro models have proven to be effective in studying the placental transporters that play a role in the exchange of nutrients, waste products, and drugs between the maternal and fetal circulations. Although primary cultures of trophoblast cells can be used to perform uptake, efflux, and metabolism studies, only the rodent HRP-1 and the human BeWo cell lines have been shown to form confluent monolayers when grown on semi-permeable membranes. Protocols for the revival, maintenance, passage, and growth of BeWo cells for transporter expression and transcellular transport studies are provided.

Key Words

Trophoblast cells BeWo cell transcellular transport efflux mechanisms 


  1. 1.
    Stulc, J. (1989) Extracellular transport pathways in the haemochorial placenta. Placenta 10, 113–119.CrossRefPubMedGoogle Scholar
  2. 2.
    Sibley, C. P. (1994) Mechanisms of ion transfer by the rat placenta-a model for the human placenta. Placenta 15, 675–691.CrossRefPubMedGoogle Scholar
  3. 3.
    Enders, A. C. and Blankenship, T. N. (1999) Comparative placental structure. Adv. Drug Delivery Rev. 38, 3–15.CrossRefGoogle Scholar
  4. 4.
    Ringler, G. E. and Strauss, J. F. III (1990) In vitro systems for the study of human placental endocrine function. Endocrine Rev. 11, 105–123.CrossRefGoogle Scholar
  5. 5.
    Kliman, H. J., Nestler, J. E., Sermasi, E., Sanger, J. M., and Strauss, J. F. III (1986) Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 118, 1567–1582.CrossRefPubMedGoogle Scholar
  6. 6.
    Hemmings, D. G., Lowen, B., Sherburne, R., Sawicki, G., and Guilbert, L. J. (2001) Villous trophoblasts cultured on semi-permeable membranes form an effective barrier to the passage of high and low molecular weight particles. Placenta 22, 70–79.CrossRefPubMedGoogle Scholar
  7. 7.
    King, A., Thomas, L., and Bischof, P. (2000) Cell culture models of trophoblast II: trophoblast cell lines-a workshop report. Placenta 21, S113–S119.CrossRefPubMedGoogle Scholar
  8. 8.
    Xu, R. H., Chen, X., Li, D. S., Li, R., Addicks, G. C., Glennon, C., Zwaka, T. P., and Thomson, J. A. (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20, 1261–1264.CrossRefPubMedGoogle Scholar
  9. 9.
    Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A., and Rossant, J. (1998) Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075.CrossRefPubMedGoogle Scholar
  10. 10.
    Liu, F., Soares, M. J., and Audus, K. L. (1997) Permeability properties of monolayers of the human trophoblast cell line BeWo. Am. J. Physiol. 42, C1596–C1604.Google Scholar
  11. 11.
    Shi, F. L., Soares, M. J., Avery, M., Liu, F., Zhang, X. M., and Audus, K. L. (1997) Permeability and metabolic properties of a trophoblast cell line (HRP-1) derived from normal rat placenta. Exp. Cell Res. 234, 147–155.CrossRefPubMedGoogle Scholar
  12. 12.
    Knipp, G. T., Liu, B., Audus, K. L., Fujii, H., Ono, T., and Soares, M. J. (2000) Fatty acid transport regulatory proteins in the developing rat placenta and in trophoblast cell culture models. Placenta 21, 367–375.CrossRefPubMedGoogle Scholar
  13. 13.
    Das, U. G., Sadiq, H. F., Soares, M. J., Hay, W. W., and Devaskar, S. U. (1998) Time-dependent physiological regulation of rodent and ovine placental glucose transporter (GLUT-1) protein. Am. J. Physiol. 43, R339–R347.Google Scholar
  14. 14.
    Rajakumar, R. A., Thamotharan, S., Menon, R. K., and Devaskar, S. U. (1998) Sp1 and Sp3 regulate transcriptional activity of the facilitative glucose transporter isoform-3 gene in mammalian neuroblasts and trophoblasts. J. Biol. Chem. 273, 27,474–27,483.CrossRefPubMedGoogle Scholar
  15. 15.
    Novak, D., Quiggle, F., Artime, C., and Beveridge, M. (2001) Regulation of glutamate transport and transport proteins in a placental cell line. Am. J. Physiol. 281, C1014–C1022.Google Scholar
  16. 16.
    Zhou, F., Tanaka, K., Soares, M. J., and You, G. F. (2003) Characterization of an organic anion transport system in a placental cell line. Am. J. Physiol. 285, E1103–E1109.Google Scholar
  17. 17.
    Pattillo, R. A. and Gey, G. O. (1968) The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro. Cancer Res. 28, 1231–1236.PubMedGoogle Scholar
  18. 18.
    Friedman, S. J. and Skehan, P. (1979) Morphological differentiation of human choriocarcinoma cells induced by methotrexate. Cancer Res. 39, 1960–1967.PubMedGoogle Scholar
  19. 19.
    Wice, B., Menton, D., Geuze, H., and Schwartz, A. L. (1990) Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp. Cell Res. 186, 306–316.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhao, H. Y. and Hundal, H. S. (2000) Identification and biochemical localization of a Na-K-Cl cotransporter in the human placental cell line BeWo. Biochem. Biophys. Res. Commun. 274, 43–48.CrossRefPubMedGoogle Scholar
  21. 21.
    Furesz, T. C., Smith, C. H., and Moe, A. J. (1993) ASC system activity is altered by development of cell polarity in trophoblast from human placenta. Am. J. Physiol. 265, C212–C217.PubMedGoogle Scholar
  22. 22.
    Moe, A. J., Furesz, T. C., and Smith, C. H. (1994) Functional characterization of L-alanine transport in a placental choriocarcinoma cell line (BeWo). Placenta 15, 797–802.CrossRefPubMedGoogle Scholar
  23. 23.
    Way, B. A., Furesz, T. C., Schwarz, J. K., Moe, A. J., and Smith, C. H. (1998) Sodium-independent lysine uptake by the BeWo choriocarcinoma cell line. Placenta 19, 323–328.CrossRefPubMedGoogle Scholar
  24. 24.
    Shah, S. W., Zhao, H., Low, S. Y., McArdle, H. J., and Hundal, H. S. (1999) Characterization of glucose transport and glucose transporters in the human choriocarcinoma cell line, BeWo. Placenta 20, 651–659.CrossRefPubMedGoogle Scholar
  25. 25.
    Vardhana, P. A. and Illsley, N. P. (2002) Transepithelial glucose transport and metabolism in BeWo choriocarcinoma cells. Placenta 23, 653–660.CrossRefPubMedGoogle Scholar
  26. 26.
    Schmid, K. E., Davidson, W. S., Myatt, L., and Woollett, L. A. (2003) Transport of cholesterol across a BeWo cell monolayer: implications for net transport of sterol from maternal to fetal circulation. J. Lipid Res. 44, 1909–1918.CrossRefPubMedGoogle Scholar
  27. 27.
    Takahashi, T., Utoguchi, N., Takara, A., Yet al. (2001) Carrier-mediated transport of folic acid in BeWo cell monolayers as a model of the human trophoblast. Placenta 22, 863–869.CrossRefPubMedGoogle Scholar
  28. 28.
    van der Ende, A., du Maine, A., Schwartz, A. L., and Strous, G. J. (1989) Effect of ATP depletion and temperature on the transferrin-mediated uptake and release of iron by BeWo choriocarcinoma cells. Biochem. J. 259, 685–692.PubMedGoogle Scholar
  29. 29.
    van der Ende, A., du Maine, A., Schwartz, A. L., and Strous, G. J. (1990) Modulation of transferrin-receptor activity and recycling after induced differentiation of BeWo choriocarcinoma cells. Biochem. J. 270, 451–457.PubMedGoogle Scholar
  30. 30.
    Prasad, P. D., Hoffmans, B. J., Moe, A. J., Smith, C. H., Leibach, F. H., and Ganapathy, V. (1996) Functional expression of the plasma membrane serotonin transporter but not the vesicular monoamine transporter in human placental trophoblasts and choriocarcinoma cells. Placenta 17, 201–207.CrossRefPubMedGoogle Scholar
  31. 31.
    Eaton, B. M. and Sooranna, S. R. (1998) Regulation of the choline transport system in superfused microcarrier cultures of BeWo cells. Placenta 19, 663–669.CrossRefPubMedGoogle Scholar
  32. 32.
    Ellinger, I., Schwab, M., Stefanescu, A., Hunziker, W., and Fuchs, R. (1999) IgG transport across trophoblast-derived BeWo cells: a model system to study IgG transport in the placenta. Eur. J. Immunol. 29, 733–744.CrossRefPubMedGoogle Scholar
  33. 33.
    Gao, J.N., Hugger, E.H., Beck-Westermeyer, M.S., and Borchardt, R.T. (2000) Estimating intestinal mucosal permeation of compounds using Caco-2 cell monolayers. Current Protocols in Pharmacology Supplement 8, 7.2.1.–7.2.23.Google Scholar
  34. 34.
    Silverstein, P. S. Karunaratne, D. N., and Audus, K. L. (2003) Uptake studies for evaluating activity of efflux transporters in a cell line representative of the bloodbrain barrier. Current Protocols in Pharmacology Supplement 23, 7.7.1–7.7.14.Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Claudia J. Bode
    • 1
  • Hong Jin
    • 1
  • Erik Rytting
    • 1
  • Peter S. Silverstein
    • 1
  • Amber M. Young
    • 1
  • Kenneth L. Audus
    • 1
  1. 1.Department of Pharmaceutical Chemistry, School of PharmacyUniversity of KansasLawrence

Personalised recommendations